

Speaker: M. Zaghari Available at: minatoyoor.com

Genome size

9 kg/cm

6 kg/cm

Pulses/Legume	Botanical Name	Anti-Nutritional Factors
Broad/faba bean	Vicia faba	Protease inhibitors, Phytic acid, Phytohaemagglutinins, tannins
Chick pea/Bengal gram	Cicer arietinum	Protease inhibitors, Cyanogens, Phytic acid, saponins, Estrogens.
Cow pea	Vigna unguiculata	Protease inhibitors, Phytic acid, Phytohaemagglutinins.
Vidnay haan	Phaseolus vulgaris	Protease inhibitors, Phytic acid, Phytohaemagglutinins, cyanogens, Saponins, Anti-vitamin E factors,
Kittley beam	nuseonus vuigunis	Amylase inhibitor.
Hyacinth bean	Dolichus lablab	Protease inhibitors, Cyanogens, Phytohaemagglutinins.
Mung bean/ green gram	Phaseolus aureus	Protease inhibitors, Phytic acid, Saponins, Anti-thiamine factors.
Field pea	Pisum sativum	Protease inhibitors, cyanogens, Phytohaemagglutinins, Phytic acid, Saponins, Anti-vitamin E factors.
Pigeon pea/red gram	Cajanus cajan	Protease inhibitors, cyanogens, Phytohaemagglutinins, Phytic acid.
Black gram	Phaseolus mungo	Protease inhibitors (Trypsin, Chemotrypsin), phytic acid.

Oilseeds	Botanical Name	Anti-Nutritional Factors
Groundnut	Arachis hypogaea	Protease inhibitors, Phytic acid, Phytohaemagglutinins, Saponins, Estrogenic factors.
Rapeseed	Brassica campestris napus	Protease inhibitors, Glucosinolates, Phytic acid, tannins.
Indian mustard	Brassica juncea	Protease inhibitors, Glucosinolates, Anti-thiamine factor.
Cottonseed	Gossypium spp.	Phytic acid, estrogenic factors, Gossypol, Anti-vitamin E factor.
Linseed	Linum usitatissimum	Cyanogens, Phytic acid, Estrogenc factor, Anti-thiamine factor, Anti-pyridoxine factor.
Soybean	Glycine max	Protease inhibitors, Glucosinolates, Phytohaemagglutinins, Phytic acid, Saponins, Estrogenic factors,
Soybean	Gryeine max	Anti-vitamin E factor, Anti-vitamin A factor, Anti-vitamin D factor, Anti-vitamin B ₁₂ factor, Allergens.
Sesame	Sesamum indicum	Phytic acid.

Source: Hill, 2003

Feedstuffs	Antinutritional Factors
Soubson most	Trypsin inhibitors (glycinin), lectins,
Soybean mean	oligosaccharides, phytic acid.
Peas	Lectins, tannins, oligosacharides.
Rapeseed meal	Glucosinolinates, tannins, phenolic acids.
Lupin	Alkaloids.
Sunflower meal	Tannins.
Wheat	Phytic acid, polyphenols, tannins, saponins.
Barley	β- glucans.
Some wild edible plants	Ovalata phytota and tanning
(bauhinia recemosa etc.)	Oxalate, phytate and talinins

Proteins	 Protease inhibitors >Trypsin inhibitors >Chemotrypsin
	 Hemagglutinins
	 Food allergens
	 Toxic amino acids
	• Saponins
Glycosides	• Cyanogens
Orycosides	• Estrogens
	• Goitrogens
Dhanala	• Gossypol
Flicitois	• Tannins
	 Anti-minerals Phytic acid Oxalates
Others	 Anti-vitamins
	Anti- enzymes

- Fiber
- Phytate
- Proteinaceous ANFs

Chemical association in the plant cell wall: (1) the cellulose backbone, with an indication the length of its basic structural unit, cellobiose; (2) framework of cellulose chains in the elementary fibril; (3) cellulose crystallite; (4) microfibril cross section, showing strands of cellulose molecules embedded in a matrix of hemicellulose and protolignin

Plant cell wall structure

Soluble and insoluble fraction

Binding nutrients Acting as a diluents Insoluble Speeding up passage rate Stimulating gizzard development Increasing intestinal viscosity (higher molecular weight fractions only) Excessive supply can stimulate bacterial overgrowth and dysbacteriosis Providing fuel for beneficial bacteria (prebiotic effect) Soluble Signaling bacteria to produce their own fiber degrading enzymes (stimbiotic effect) Directly influencing the immune system Indirectly influencing the immune system through changing bacterial populations community structure by all mechanisms noted above

In the 1950s, pioneering scientists added amylases and proteases to the diets of various farm animals and observed benefits in productivity.

Possibly, Warden and Schaible (1962) were the first to show that exogenous phytase enhances phytate-P utilisation and bone mineralisation in broiler chicks.

Nevertheless, three decades elapsed before an Aspergillus nigerderived phytase feed enzyme, with the capacity to lib-erate phytate-bound P and reduce P excretion, was commercially introduced in 1991.

Table 3. Effect of da	ate pits and enzyme on chio	ken body weight and	l feed conversion ratio	þ				
		Body weight (g)			Feed conversion ratio			
Treatments	10 days	28 days	42 days	10 days	28 days	42 days		
Control	161.8ª	1078.0	2098.5	1.40	1.64	1.85		
Main effect Enzyme								
Without enzyme	149.0 ^b	1105.2	2070.7	1.26 ^b	1.58 ^a	1.94 ^a		
With enzyme	144.0 ^b	1101.0	2090.4	1.32 ^a	1.51 ^{ab}	1.84 ^b		
SEM	2.13 ^b	14.09	34.39	0.017	0.031 ^a	0.031		
Date pit								
10%	143.4 ^b	1094.2	2133.1	1.34 ^a	1.47	1.81 ^b		
20%	148.1 ^b	1129.1	2058.1	1.36 ^a	1.56	1.90 ^{ab}		
30%	149.0 ^b	1086.0	2050.5	1.19 ^b	1.61	1.96 ^a		
SEM	2.6	17.2	42.12	0.021	0.038	0.039		
Probabilities								
Enzyme	0.09	0.83	0.68	0.01	0.12	0.03		
Date pit	0.29	0.20	0.33	0.0001	0.04	0.03		
Enzyme $ imes$ date pit	0.65	0.58	0.47	0.24	0.21	0.75		

DP, date pit; WE, without enzyme; E, enzyme supplementation. ^{a,b} Means with different superscripts in each column are significantly different (P < 0.05). Differences between the control group and the remaining groups were assessed using Dunnett's test and significant differences (P < 0.05) are presented with different superscript in each column.

		Wheat cultivar							
Parameter ² (% of DM)	Isengrain	Amiro	Guadalupe	Horzal					
Starch	68.45	67.46	67.57	66.68					
СР	9.01	9.94	10.94	13.71					
Crude fiber	3.13	2.93	3.21	2.82					
Ether extract	1.78	1.68	1.80	1.73					
Ash	1.73	1.85	2.01	1.57					
Neutral detergent fiber	15.26	17.06	17.30	16.85					
Acid detergent fiber	3.72	3.80	4.41	3.52					
Lignin	0.59	0.87	0.87	0.65					
Total nonstarch polysaccharides	9.76	10.79	11.23	10.91					
Total soluble nonstarch polysaccharides	1.33	2.40	2.04	2.41					
Arabinose	0.35	0.66	0.65	0.76					
Xylose	0.46	1.04	0.88	1.04					
Total insoluble nonstarch polysaccharides	8.42	8.39	9.19	8.51					
Arabinose	2.00	1.96	2.34	2.22					
Xylose	2.95	3.30	3.34	3.20					
Gross energy (kcal/kg)	4,368	4,438	4,407	4,469					
Viscosity (cP)	4.98	5.89	6.47	4.53					
Specific weight (kg/hL)	74.40	72.70	77.40	81.10					
P (mm)	57.00	63.00	76.00	123.00					
L (mm)	18.00	43.00	24.00	39.00					
P/L	3.16	1.46	3.16	3.15					
W (10 ⁻⁴ J)	49	102	84	222					

Property	Wheat	Rye	Triticale	Barley	Oats
Yield of WSNSPS $(\%)^{\alpha}$	0.6	1.7	0.7	1.2	1.0
Monosaccharide (mg/g) ^b					
Arabinose	238	254	281	66	81
Xylose	264	364	267	75	63
Głucose	43	55	34	481	443
Others	135	46	91	29	53
Total	680	719	673	651	640
<i>M</i> . _w ^c	255 000	770 000	569 000	665 000	44600
M. ^d	60 500	90 300	66 000	89 700	66 500
Polydispersity (M_w/M_n)	4.2	8.5	8.6	7.4	6.7
Viscosity, $\eta \left(dL/g \right)^e$	1.7	5.9	4.0	4.5	3.1
Water-binding capacity (g water/g dry sample)	0.41	0.47	0.42	0.49	0.44
Relative growth depression ^t	+	+++	+(+)	++	++

Physical and chemical properties of water-soluble, nonstarch polysaccharides (WSNSPS) in cereals

گندمهای ایران (درصد در ماده	واريتههاى مختلف أ	فیر نشاســتهای و	ں س ا کاریدھای غ	۲-۱ . ترکیب پلی	جدول ۱
					فشک)

آميلوز	β-گلوکان	آرابينوكسيلان	زايلوز	مادہ خشک	ارقام زراعی گندم
**,*)	3,+	۴,۰	۲,۵	91,9	رتا
19,87	٩,٣	۴,۲	۲,۶	93,V	اترک
19,71	1,7	۴,۲	۲,۶	91,4	اكبرى
22,73	3,8	¥,Y	۲,۹	97,7	الموت
19,07	N/+	÷,Y	۲,۹	91,7	لوند
۲.,۳۲	٩,٣	۴,.	۲,۵	91,7	بهار
۱۹,+۲	٩,٣	τ,γ	۲,۹	۹.,۷	-0 -
,	3,8	τ ,γ	۲,۹	93 ₆ +	چمران
۲۱,+۴	+, N	۴,۲	۲,۶	91,0	دريا
۲۱,۳۲	١,٣	۴,٣	Υ,Υ	91,9	دز
19,07	٩,٣	۴,۲	۲,۶	٩٢,.	کویر
۱۸,۵۶	N/+	Ψ,Υ	۲,۹	9Y,+	موقان
۲۳,۴۵	٨,٣	۴,۲	۲,۶	۹.,۹	نیک نژاد
۲+,۸۷	3,8	۳,۸	۲,۴	91,9	پیشگام
۲.,۹۸	3,8	۴,۹	τ.,.	91,V	پيشتار
19,71	۰,۹	۴,.	۲,۵	۹١,٨	روشن
۲.,۴۲	3,8	۳,۹	۲,۴	91,7	شيراز
۲.,۲.	+, 9	۴,۲	۲٫۶	٩٢,۶	شهريار
31,1+	٨,٣	τ,γ	۲,۹	93,A	نجن
Y+,FY±1,FY	۱,+۹±+,۱۱	¥,77*±+,7*	Y,FA±+,Y	91,87±+,0	ميانگين ± انحراف معيار

Enzymatic chemical gravimetric Englyst & Uppsala procedures

		N	on-cell	ulosic p	olysacc	haride	S				
	Cell	Ara	Xyl	Man	Gal	Glc	UA	NCP	NSP	KL	Fibre
Cereals											
Brown rice	1	5	4	1	1	8	2	21 (2)	22 (2)	13	35
Maize	22	22	30	3	5	10	7	75 (9)	97 (9)	11	108
Sorghum	15	17	13	1	3	10	4	51 (4)	66 (4)	16	83
Wheat	20	29	47	3	4	11	5	99 (25)	119 (25)	10	138
Rye	16	36	61	5	5	26	4	136 (42)	152 (42)	21	174
Barley	43	28	56	4	3	47	6	143 (56)	186 (56)	35	221
Oats	82	18	80	3	7	33	10	150 (40)	232 (40)	66	298
Cereal co-products											
Maize bran	83	72	116	4	20	16	44	271 (32)	354 (32)	25	379
Maize feed meal	33	33	48	2	9	10	20	123 (10)	156 (10)	18	174
Maize DDGS	58	52	71	19	13	21	16	192 (34)	250 (34)	39	289
Wheat bran	72	90	148	5	8	35	15	302 (29)	374 (29)	75	449
Wheat middling	19	48	67	8	7	33	10	171 (71)	190 (71)	11	201
Wheat DDGS	50	57	86	16	11	33	8	212 (67)	262 (67)	66	328
Rye bran	39	78	213	3	12	66	10	383 (63)	422 (63)	68	490
Barley hull meal	192	51	184	3	6	25	18	286 (20)	478 (20)	115	594
Oat hull meal	196	28	212	2	9	20	36	309 (13)	505 (13)	148	653
Protein rich feedstu	ffs										
Soybean meal	62	26	19	13	41	7	48	155 (63)	217 (63)	16	233
Rapeseed meal	52	43	17	6	19	21	61	168 (55)	220 (55)	134	354
Peas	53	26	13	2	7	36	32	127 (52)	180 (52)	12	192
Fava beans	81	24	12	2	6	32	33	109 (50)	190 (50)	20	210
Lupin	131	43	36	9	141	2	39	274 (134)	405 (134)	12	416
Palm cake	73	12	1	309	15	7	19	393 (32)	466 (32)	136	602
Sunflower cake	123	31	59	12	13	17	67	192 (57)	315 (57)	133	448

Table 1. Non-starch polysaccharide and lignin content (g/kg dry matter) of selected feedstuffs

NCP, non-cellulosic polysaccharides; NSP, non-starch polysaccharides; Cell, cellulose; Ara, arabinose; Xyl, xylose; Man, mannose; Gal, galactose; Glc, glucose; UA, uronic acids; KL, Klason lignin; DDGS, distillers dry grains with soluble. Values in parentheses are soluble NCP/NSP. Data from own database.

Nomenclature and action of β -glucan-degrading enzymes

Common name	Systematic name	Action
Cellulase	$1,4-(1,3;1,4)-\beta$ -D-glucan 4-glucanohydrolase	Endohydrolysis of 1,4 linkages in cellulose and $\beta\text{-}D\text{-}glucans$ containing 1,3 and 1,4 linkages
Laminarinase	1,4-(1,3;1,4)-β-D-glucan 3(4)- glucanohydrolase	Endohydrolysis of 1,3 or 1,4 linkages in β -D-glucans when the glucose residue whose reducing group is involved in the linkage to be hydrolyzed is itself substituted at C-3
β-glucosidase	β-D-glucoside glucohydrolase	Hydrolysis of terminal nonreducing $\beta\text{-}D\text{-}glucosyl residues, with the release of \beta\text{-}D\text{-}glucose$
Endo-1,3-β- glucanase	1,3-β-D-glucan glucanohydrolase	Endohydrolysis of 1,3 linkages in 1,3-β-D-glucans
Exo-1,3-β-glucanase	1,3-β-D-glucan glucohydrolase	Exohydrolysis of 1,3 linkages in 1,3- β -D-glucans, with the release of α -glucose
Endo-1,2-β- glucanase	1,2-β-D-glucan glucanohydrolase	Endohydrolysis of 1,2 linkages in 1,2-β-D-glucans
Lichenase	1,3–1,4-β-D-glucan 4-glucanohydrolase	Endohydrolysis of 1,4 linkages in $\beta\text{-}D\text{-}glucans$ containing 1,3 and 1,4 linkages
Exo-1,4-β-glucanase	1,4-β-D-glucan glucohydrolase	Exohydrolysis of 1,4 linkages in 1,4-β-glucans
Endo-1,6-β- glucanase	1,6-β-D-glucan glucanohydrolase	Endohydrolysis of 1,6 linkages in 1,6-β-glucans

β(1->4)-linked D-glucopyranose chain

..... Hydrogen bond

Action of laminarinase and endo-1,3-β-glucanase on a 1,3- or 1,4-β-D-glucan. Laminarinases cleave linkages C, D, F, and G, whereas endo-1,3-β-glucanases cleave linkages B, C, E, and F

Effect of enzyme concentration (X) and rye content of diet (Z) on chick weight gain (Y): $Y = 436.11 + 7.58 \log X - 0.63Z + 0.75Z \log X$.

Energy values evaluation and improvement of soybean meal 3139 roiler chickens

3110
Table 10. Effect of dietary enzyme supplen
 on on nutrient digestibility, sugar degradation rate and value of broiler chickens on d 28 (Experiment 2). 3086 nergy value (Kc. <mark>3079</mark> Nutrient digestibil 3077 gar degradation DM^2 MЕ Suci Raffinose Stachyose Treatment¹ Con 75.5299.6 $92.50^{\rm d}$ $93.15^{\rm d}$ GAS 99.1 95.94^{bc} 96.39^{bc} 75.27 96.84^{b} MAS $96.98^{\rm b}$ 76.5399.6 94.40^{cd} 94.38^{cd} \mathbf{PR} 99.' 3029 ⁵⁵₂₂ 3029 GA 99.4 99.72^{a} 99.80^{a} \mathbf{M} 99.6 99.72^{a} 99.98^{a} GA SE P-v S+PRO)7 99.5 99.72^{a} 99.96^a 200 378 0.4970.4949.08 0.0 < 0.001 0.006 0.1< 0.00115ns with different ripts within the ow are significan rent (P < 0.05). nnanase; PRO. AS+PRO: β -ma ontrol diet: GA actosidase: MA se; GAS+PRO, tosidase+ Prote GAS+MAS+PF alactosidase+ β -1 ase + Protease.Prc²Abbreviations: AME, apparent metabolizable energy; AMEn, nitrogen corrected apparent metabolizable energy; CP, crude protein; DM, dry matter. ME, apr beta Mannanase con 2022 Poultry Scr 101:101978

AME (Kcal/Kg)

30

Water pH <6 Water temperature <20C Dietary calcium <0.9% Phytate:protein ratio <0.04:1 Dietary chloride concentration > 0.25% Presence of protease and carbohydrases Most phytate from cereals and grain legumes, little from by-products Presence of acidifiers No therapeutic use of Zn or Cu Low viscosity cereals

90-95% of dietary phytate may be accessible, relax constraints

50-60% of dietary phytate may be accessible, increase constraints

Water pH >8 Water temperature >30C Phytate:protein ratio 0.05:1 Dietary chloride concentration <0.25% No protease or carbohydrase use Substantial concentration of phytate from byproducts such as ricebran No acidifiers in the diet or water High concentrations of Zn or Cu Highly viscous cereals

- More complete phytate destruction is dependent upon ingredient location (Bedford 2023).
- Phytate destruction reduce incidence of Woody breast and Femoral head necrosis (Greene *et al.*, 2020).
- Crop or Gizzard retention results in more phytate hydrolysis
- Catalytic efficiency

Xylanase increases the permeability of the aleurone layer of wheat, which is the site of phytic acid storage. Xylanase, by itself, will not target phytic acid, but a combination of xylanase and phytase may be mutually beneficial. By the same reasoning, the use of multiple carbohydrase activities may produce greater benefit than each of the enzymes acting individually.

Туре		Taxa		Exemplary protein	NCBI accession number	Amino acids ^b	MW kDa ^b	Isoelectric point ^{b,c}	pH optima (*C) (units		Specific activity (units/mg)	V _{max} (units/mg)	<i>T</i> _m (°C)	<i>K</i> _m (μΜ)	k_{cat} (s ⁻¹)
	Bacteria	Gram-positive	e	Selenomonas ruminantium Agp	YP_005432715	413 ^d	46	(7.9)		Predicted phytase					
		Gram-negativ	e	Escherichia coli AppA	M58708	410	47	(6.1)	4.5	55	1,700	-	63.7	—	-
		Ascomycetes	Filamentous	Aspergillus niger PhyA	CAA78904	448	49	4.8-5.2 (4.8)	2.0, 5-5.5	65	-	120	66.3	34	170
	Fungi	riscomycettes	Yeast	Candida krusei WZ-001	_	—	—	5.5	4.6	40	1,210	-	inactivated >50	30	-
HAPhy		Basidiomycete	25	Peniophora lycii PhyA (mushroom)	CAC48195	410	45	3.6 (4.4)	4-4.5	50–55	1,080	-	60	—	-
	Plants	Monocots		Zea mays Phy S11 (corn)	CAA11390	369 ^f	80 (dimer)	(5.4)	4.8	55	2.3	-	—	117	-
	1 141103	Dicots		Arabidopsis thaliana	AAB60740	449	51	(8.6)			Pred	icted phyt	ase		
	Animals			Avian (Gallus gallus) MINPP (chicken)	NP_989975	430	48	(8.0)	5	-	—	0.7	_	140	-
	Bacteria	Gram-positive		Bacillus amyloliquefaciens DS11	O66037	356 ^d	39	(4.9)	7–8	70	-	-	inactivated >70	138	17
BBPhy		Gram-negative		Sphingomonas sp. SKA58	EAT09404	336 ^d	35	(4.7)		Predicted phytase					
		Cyanobacteria		Nostoc sp. PCC 7120	NP_488278	1,821	193	(4.2)		Predicted phytase					
	Fungi	Ascomycetes	Filamentous	Aspergillus niger pH 6.0 optimum acid phosphatase (APase)	AAB31768	583	64	(5.1)	_	-	_	-	_	315	2.6
PAPhy	Plante	Monocots		Triticum aestivum (wheat) phytase	AX298209	520 ^d	58	7.4 (6.1)	6.0	45	137	_	-	-	-
	A laits	Dicots		<i>Glycine max</i> (soybean) GmPhy	AAK49438	519 ^d	59	(5.1)	4.5–5	58	_	_	inactivated >60	61	-
PTPhy	Bacteria	Gram-positive	2	Clostridium acetobutylicum ATCC 824	NP_149178	319	36	(9.7)			Pred	icted phyt	ase		
		Gram-negative		Selenomonas ruminantium PhyAsr	AAQ13669	319	37	(8.4)	4.5-5.5	50-55	-	-	inactivated >60	425	264
Unknown	Protozoa			Paramecium tetraurelia 51s	—	-	240 (hexamer)	-	7.0	-	10	-	-	250	-

Presently known distribution of representatives of the different catalytic classes of phytate degrading enzymes

Segment	Specific (per g digesta)	Total (per segment)	
Crop	10.2 ^a	98 ^a	
Stomach	9.2 ^a	97 ^a	
Small intestine	14.6 ^a	359 ^b	
Small intestinal mucosa	11.5 ^a	227 ^{ab}	
Sum pre-caecal		781	
Caeca	135.4 ^b	663 ^c	
Total	1,444		

Phytase activity (µmol phytic acid h⁻¹*) in the digestive tract of laying hens fed wheat-corn*soybean meal-based diet without microbial phytase supplementation (Marounek et al., 2010).¹

¹ Means within a column not sharing a common letter differ significantly (*P*<0.05).

Poultry GIT microbiota can utilize **10-25%** of dietary phytate

InsP6 disappearance measured in sections of the digestive tract of broiler chickens fed maize-soybean meal-based diets without a phytase supplement; data from Rutherfurd et al. (2014) and Zeller et al. (2015, 2016).

Pattern of InsP5 isomers detected in different sections of the gastrointestinal tract after feeding low-P maize-soybean meal diets without added phytase in two experiments with broiler chickens (Zeller et al., 2015, 2016).

	NC: low-P diet	NC +1000 FTU <i>Escherichia</i> <i>coli</i> phytase/kg	NC +1000 FTU <i>Peniophora</i> <i>lycii</i> phytase/kg
Feed (FTU/kg)	14	825	1,152
Digesta (FTU/kg DM intake)			
Crop	67 ^c	649 ^a	404 ^b
Proventriculus and gizzard	28 ^b	406 ^a	63 ^b
Jejunum	29 ^b	554 ^a	25 ^b
Ileum	16 ^b	91 ^a	6 ^b

*Phytase activity in diet and digesta of broiler chickens fed diets with or without added microbial phytase from 8 to 22 days of age; activity measured at day 22 (Onyango et al., 2005).*¹

¹ Means within a row not sharing a common letter differ significantly (*P*<0.05).

12. Phytase dosage

45

12. Phytase dosage

12. Phytase dosage

Shirley and Edwards, 2003

فعالیت استاندارد فیتاز به عنوان مقدار آنزیمی تعریف می شود که ۱ میکرومول فسفات معدنی را از ۵ میلی مولار سوبسترای فیتات سدیم در دقیقه ۲۲ در PH برابر با ۵٫۵ و دمای ۳۷ درجه سانتی گراد آزاد می کند و به صورت FTU، FYT یا OUT در هر کیلوگرم خوراک بیان می شود (ویلانس و همکاران، ۲۰۱۶ یا OUT در مرکار در تغذیه عملی ۲۰۱۶ با این حال، از آنجا که عوامل زیادی بر عملکرد فیتاز در تغذیه عملی تأثیر می گذارند، واحدهای آنزیمی مانند FTU، FYT یا OUT که در شرایط برون تنی^۲ اندازه گیری یا برآورد می شوند، پیش بینی کننده مناسبی برای کارایی فیتاز در داخل بدن حیوان یا درون تنی^۳ نیستند (بدفورد و پارتریج، ۲۰۱۱).

15 . Functionality of GIT

Efficacy of exogenous enzymes in poultry could possibly be increased by facilitating a **longer retention time** in the anterior digestive tract, through intermittent feeding and an increased content of structural components in the diet.

Cumulative excretion rates for broiler chickens fed wheat diets supplemented with oat hulls and without supplementation. Bars indicate standard deviation (n = 4). (From Hetland and Svihus, 2001.)

Leonor Michaelis

Michaelis Menten kinetics

 Vmax represents the maximum speed rate achieved by the reaction, at maximum (saturating) substrate concentrations.

turnover numbers k_{cat} for hydrolysis of sodium phytate by phytases reported so far range from $<10 \text{ s}^{-1}$ (soybean, barley P2, maize; Gibson and Ullah, 1988; Laboure *et al.*, 1993; Greiner *et al.*, 2000b) to 10,325 s⁻¹ (Yersinia intermedia; Huang *et al.*, 2008). High affinity for sodium phytate is expressed by a low Michaelis–Menten constant $K_{\rm M}$. $K_{\rm M}$ values of phytases studied range from <10to 650 μ M. Relatively low $K_{\rm M}$ values have been reported for phytases from A. *niger* (10–54 μ M; Ullah, 1988; Wyss *et al.*, 1999a; Greiner *et al.*, 2009)

