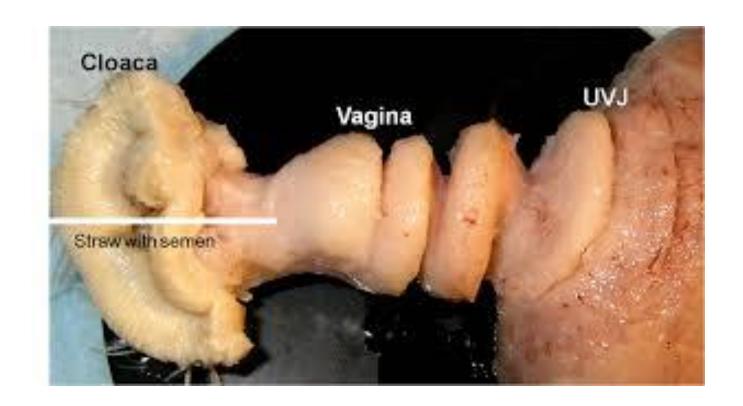
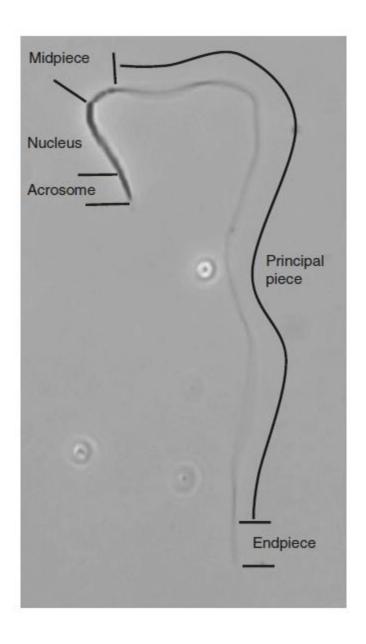
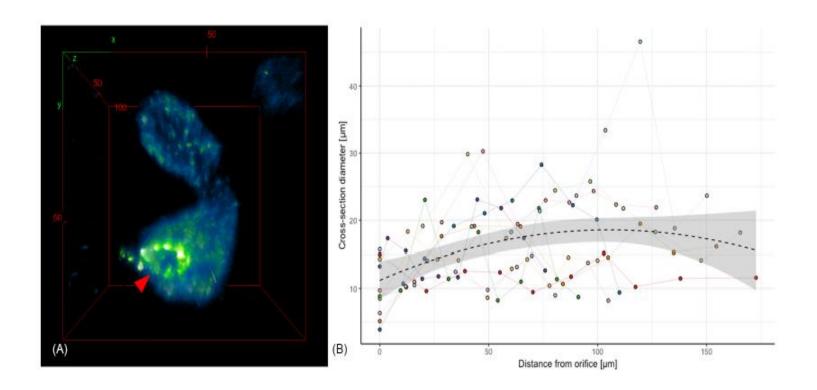
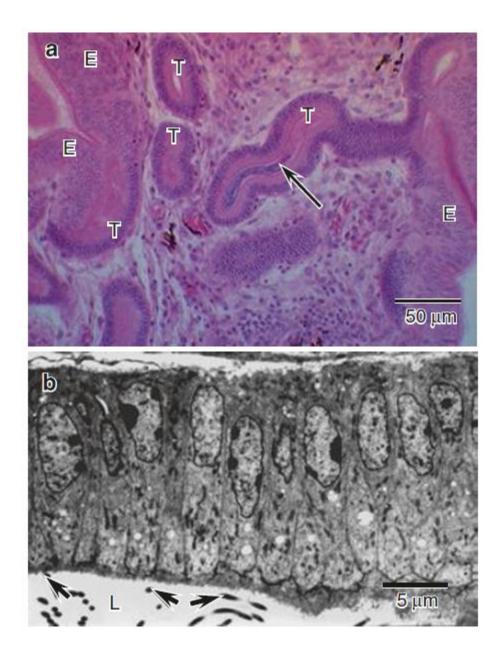
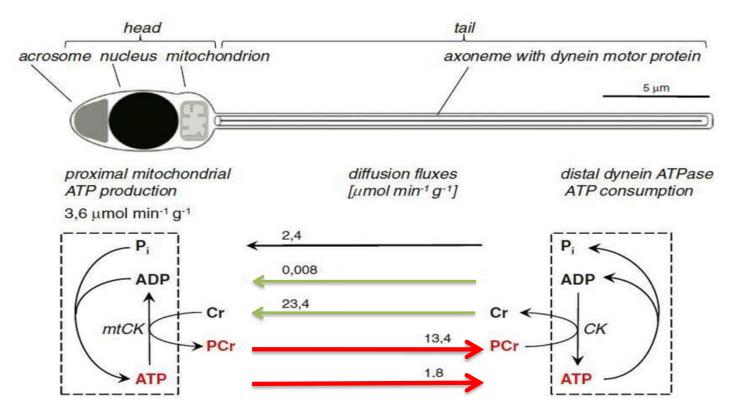

زهردانشی حون سخن بشوی از آموختن یک زمان نعنوی











Wallimann et.al, 2011

Embryo Mortalities , Vitamins and Minerals Deficiencies

Vitamin/Mineral	Stage of Incubation					
vitamin/ivimerai	Early	Mid-term	Mid to late	Late		
А	×					
D				×		
E	×			×		
К				×		
B1	×			×		
B2		×	×	×		
В3	×		×			
B5	×		×	×		
В6			×			
Н	×			×		
В9				×		
B12		×	×	×		
Ca				×		
Р		×		×		
Mg				×		
Cu	×					
I				×		
Mn				×		
Se	×			×		
Zn		×		х		

ROSS 308 PARENT STOCK: Nutrition Specifications

Female Parent Stock Nutrient Specifications

ADDED TRACE MINERALS PER KG						
Copper	mg	16		10		
Iodine	mg	1.25		2.00		
Iron	mg	40		50		
Manganese	mg	120		120		
Selenium	mg	0.30		0.30		
Zinc	mg	110		110		
ADDED VITAMINS PER KG		Wheat based feed	Maize based feed	Wheat based feed	Maize based feed	
Vitamin A	IU	11000	10000	12000	11000	
Vitamin D3	IU	3500	3500	3500	3500	
Vitamin E	IU	100	100	100	100	
Vitamin K (Menadione)	mg	3	3	5	5	
Thiamin (B1)	mg	3	3	3	3	
Riboflavin (B2)	mg	6	6	12	12	
Nicotinic Acid	mg	30	35	50	55	
Pantothenic Acid	mg	13	15	13	15	
Pyridoxine (B6)	mg	4	3	5	4	
Biotin	mg	0.20	0.15	0.30	0.25	
Folic Acid	mg	1.50	1.50	2.00	2.00	
Vitamin B12	mg	0.02	0.02	0.03	0.03	

Lee Russell McDowell

VITAMINS
IN
ANIMAL
AND
HUMAN
NUTRITION

SECOND EDITION

Iowa State University Press / Ames

Fig. 10.6 Pantothenic acid deficiency in a turkey with dermatitis on lower beak and at angle of mouth (lower turkey). Sticky exudate that formed on the eyelid resulted in encrustation and caused swollen eyelids to remain stuck together. Normal turkey above is the control. (Courtesy of T.M. Ferguson [deceased] and J.R. Couch, Texas A&M University.)

They found that the hens required addition of 1.0 mg/kg for optimum egg production, at least 4.0

mg/kg for maximum hatchability, and 8.0 mg/kg for optimum hatchability

mg/kg for maximum of offspring.

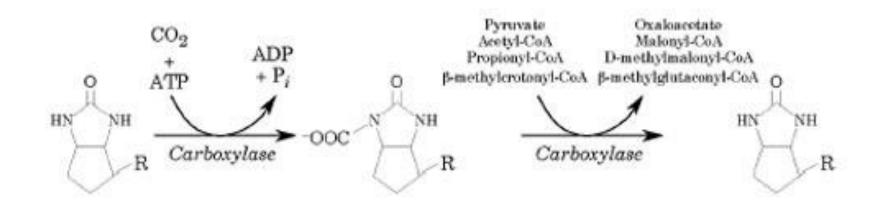
bility and viability of offspring.

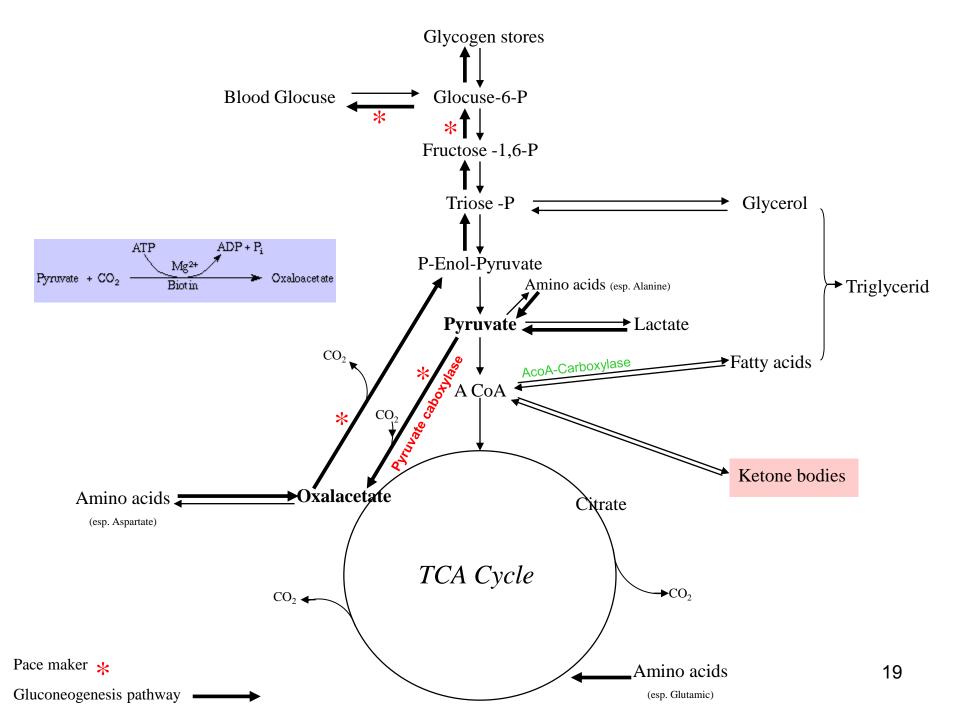
may be subject to the second of (1963) fed a purified diet to White Leghorn hens that contained 0.9 mg of pantothenic acid per kilogram of diet. They found that the hens required addition of 1.0 mg/kg for optimum egg production, at least 4.0 mg/kg for maximum hatchability, and 8.0 mg/kg for optimum hatchability and viability of offspring. Dawson et al. (1962) reported that turkey breeder hens fed a diet deficient in pantothenic acid demonstrated a high embryonic mortality during the first week of development. After 17 days, the surviving embryos were small and poorly feathered, and showed signs of edema, hemorrhaging, fatty livers, and pale dilated hearts.

Biotin

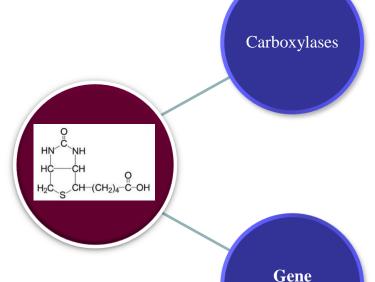
$$H \rightarrow 0$$
 $H \rightarrow 0$
 $S \rightarrow 0$
 $S \rightarrow 0$
 $S \rightarrow 0$

Imidazole ring with valeric acid side chain


 $C_{10}H_{16}N_2O_3S_1$

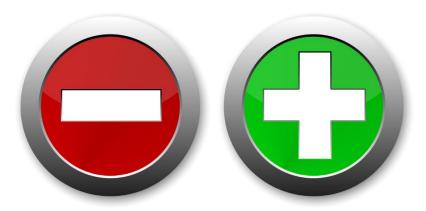

MW: 224.31 g/mol

8 optically isomers


Biochemical function

- Pyruvate carboxylase
- Acetyl CoA carboxylase
- Propinyl coA carboxylase
- •Methyl crotonyl coenzyme A carboxylase

New biochemical function

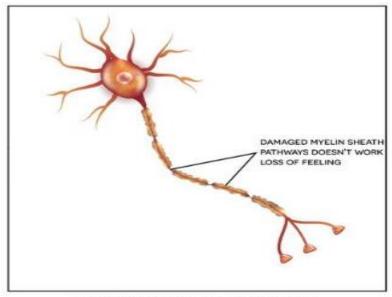


• Development

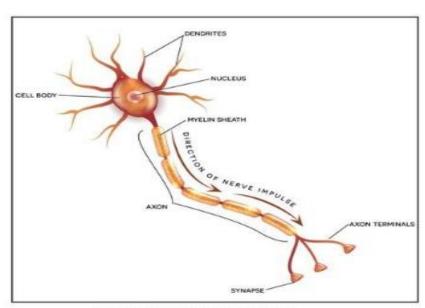
- Immunity
- Growth

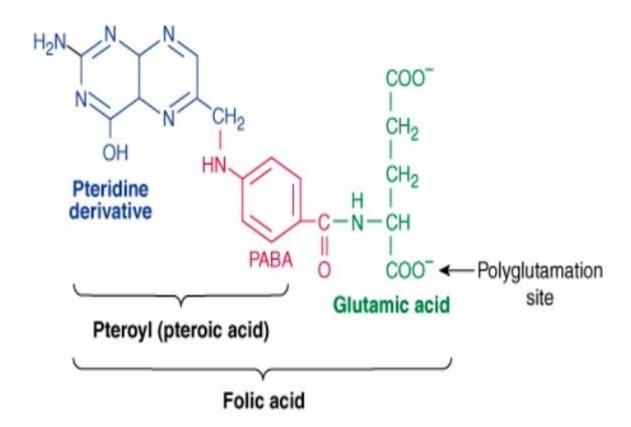
expression

- Metabolism
- Reproduction



Neuroscience 289 (2015) 233-241


TERATOGENIC EFFECTS OF PYRIDOXINE ON THE SPINAL CORD AND DORSAL ROOT GANGLIA OF EMBRYONIC CHICKENS



HEALTHY NERVE CELL

METABOLISM

Digestion, Absorption, and Transport

Polyglutamate forms are digested via hydrolysis to pteroylmonoglutamate prior to transport across the intestinal mucosa. Intraluminal polyglutamate hydrolysis is catalyzed by a conjugase intestinal enzyme found in the brush border. This brush border pteroylpolyglutamate hydrolase (γ-carboxy peptidase) is an exopeptidase that cleaves the polyglutamyl chain one residue at a time starting from the carboxyl end. It has a pH optimum near neutrality and is activated by zinc (Chandler et al., 1986). In humans, a zinc deficiency resulted in a decreased intestinal hydrolysis of pteroylpolyglutamate (Tamura et al., 1978). Conjugase activity is widely distributed in the mucosa of the proximal small intestine, both intracellularly and in association with the brush border. Conjugase activities have also been found in bile, pancreatic juice, kidney, and liver. Conjugase activity is reduced by nutritional zinc deficiency, chronic consumption of alcohol, and exposure to naturally occurring inhibitors in foods.

Pteroylmonoglutamate is absorbed predominantly in the jejunum, with lesser amounts in the duodenum, by a Na⁺-coupled carrier-mediated process. Folacin is also absorbed passively, presumably by diffusion; this mechanism accounts for 20 to 30% of folacin absorption, regardless of folate concentration.

Dietary folates, after hydrolysis and absorption from the intestine, are transported in plasma as monoglutamate derivatives, with only limited methylation (5-methyltetrahydrofolate). Folacin taken up by the liver is converted primarily to 5-methyltetrahydrofolate and 10-formyltetrahydrofolate and then transported to the peripheral tissues. The monoglutamate derivatives are then taken up by cells in tissues by specific transport systems. There, the pteroylpolyglutamates—the major folacin form in cells—are built up again in stepwise fashion by the enzyme folate polyglutamate synthetase. Polyglutamation traps folates inside cells at concentrations one to two orders of magnitude greater than those of extracellular fluids. Polyglutamates serve to keep folacin within the cells since only the monoglutamate forms are transported across membranes, and only the monoglutamates are found in plasma and urine (Wagner, 1995). Folacin enzymes are compartmentalized between the cytosol and the mitochondria. Almost all the folate in the cell is distributed equally between the two compartments. There are also mitohave been produced in chicks fed corn-soybean meal diets (Pesti et al., 1991).

Self-synthesis of folacin is dependent on dietary composition. For poultry, some research has indicated higher folacin requirements for very high protein diets, or when sucrose was the only source of carbohydrates (Scott et al., 1982). Keagy and Oace (1984) reported that dietary fiber had an effect on folacin utilization; xylan, wheat bran, and beans stimulated folacin synthesis in the rat, reflected as higher fecal and liver folacin. For humans it was concluded that milk type differentially affects intestinal folacin biosynthesis and the superior folacin availability from human (versus cow and goat) milk-containing diets is due in part to enhanced intestinal biosynthesis of folacin (Semchuk et al., 1994).

The levels of antibacterials added to the feed will affect microbial synthesis of folacin. Sulfa drugs, which are commonly added to livestock diets, are folacin antagonists (see Deficiency). In the chicken, sulfa drugs have been shown to increase the requirement (Scott et al., 1982). Moldy feeds (e.g., aflatoxins) have also been shown to contain antagonists that inhibit microbial intestinal synthesis in swine (Purser, 1981).

Folacin requirements are dependent on the form in which it is fed and concentrations and interrelationships of other nutrients. Deficiencies of choline, vitamin B_{12} , iron, and vitamin C all have an effect on folacin needs. Although most folacin in poultry feedstuffs is present in conjugated form, the young chick is fully capable of utilizing it. On the contrary, Baker et al. (1978) reported that human patients over 60 years of age utilized conjugated forms of folacin much less efficiently than monoglutamates.

Folacin requirements are related to type and level of production. Growth rate, age, and pregnancy influence folacin requirements. The requirement decreases with age because diminished growth rate reduces the need for DNA synthesis. Increased catabolism of folacin is a feature of pregnancy. Studies with both rats (McNulty et al., 1993) and humans (McPartlin et al., 1993) demonstrated an enhanced folacin catabolism that was a feature of pregnancy per se and not simply due to increased weight. In poultry the folacin requirement for egg hatchability is higher than that for production (NRC, 1994). Taylor (1947) reported that 0.12 mg of folacin per kilogram of diet was satisfactory for egg production, but higher levels were required for good hatchability. Table 12.1 summarizes the folacin requirements for various livestock species and humans; a more complete listing is given in the appendix, Table A1.

The current Recommended Dietary Allowances (RDAs) for folates

pharmaceutical companies in the preparation of capsules, tablets, and ampoules. The tablets used for prophylactic purposes usually contain 2 mg per daily dose. For therapeutic purposes, 10- to 150-mg tablets are taken one to three times daily.

The recovery of vitamin B₆ as pyridoxine hydrochloride in a multivitamin premix not containing trace minerals was 100%, even after 3 months in storage at 37°C. However, stability in a premix containing trace minerals was poor, with only 45% recovery after 3 months at 37°C (Adams, 1982). Verbeeck (1975) found vitamin B₆ to be stable in premixes with minerals as sulfates. However, if minerals in the form of carbonates and oxides are used, 25% of the vitamin can be lost over a 3month period. Stress agents such as choline chloride help catalyze this destruction. Gadient (1986) considers pyridoxine to be very sensitive to heat, slightly sensitive to moisture and light, and insensitive to oxygen. Retention of B activity in pelleted feeds after 3 months at room tema be 80 to 100% as a general rule. The retention of pyri doxine in an extruded fish meal fed after 1 month at room temperature was found to be 56%.

mu ated for the need of vitamin B₆ supplementatio for humar or young and pregnant or lactating women. Re igher for individuals dur iin drug therapy tablism (see Deficiency). Vitami supplements are sommonly given when isoniazid is used in tube treatment and when penicillamine is used in the treatment of Wilson's disease. Vitamin B₆ supplements are also frequently given along with most anticonvulsant drugs. Reports indicate that mothers unsupplemented with vitamin B₆ produce milk low in the vitamin (Guilarte, 1993). Based on these studies, it is apparent that some degree of vitamin B₆ deficiency may be present in infants

whose sole source of nutrients is breast milk and whose supplemented with the vitamin (see Deficiency). Supplemented with the vitamin (see Deficiency). B₆ is needed by persons with the "Chinese restaurant sy dition in which individuals are sensitive to foods heavi monosodium glutamate (Folkers et al., 1981). Individ

Pro date: Exp date:

411

tunnel syndrome (pain and/or numbness in hands) require vitamin B₆ well in excess of the RDA requirement (LeKlem, 1991). Pyridoxine in pharmacological doses was useful in the management of kidney stones, decreasing urinary oxalate excretion in patients with recurrent oxalate renal calculi (Mitwalli, 1989). In doses of 10 to 25 mg, vitamin B₆ in-

Preface

Vitamin products began to be developed give an overview, our own several decades ago. Nevertheless, there is still much that is obscure in the pharmaceutical technology of vitamins. This ciated with this class of substances. The multivitamin products are unique in combining such a large number of active sub-stances with entirely different chemical structures and physical properties. This is compoundes by the fact that virtually all the vitamins are more or less unstabl when formulated and some of them inter-

There has been a large number of publications on the pharmaceutical technology of vitamin formulations. The intention of this text is not merely to review the literature. Although a wide selection of publications has been quoted in order to

sents a large proportion of the text and this is reflected by the many formulations which are specified, almost all of which were developed in the food products/ pharmaceuticals applications laboratories of BASF AG, Ludwigshafen, FRG. However, not all of them have been exami ned for chemical stability

On this basis, the present text aims to make the process of development of vitamin products intelligible and thus to aid pharmacists engaged in this work.

The entries have been arranged alphabetically to provide rapid access to the information, and this is facilitated by crossreferences and the key words which are

Spring 1988

Volker Bühler

In the second edition of this book some amendements and actualizations were introduced. This concerns e. g. the situation of the Pharmacopoeias and other legal conditions. Furthermore several new formulations of vitamin combinations (e. g multivitamin syrup, vitamin C + E tablets, vitamin B complex injectable, multivitamin effervescent tablets, multivitamin tablets with minerals) and a great chapter of multivitamin solutions were added to impart an even better knowledge about the pharmaceutical technology of vitamins

Since this book has the structure of a dictionary and many crosslinks between the individual sections are included it was decided to offer it also in an electronic form of

An alphabetical index of all formulations listed in the book was added.

September 2000

Volker Bühler

27

pharmaceutical companies in the preparation of capsules, tablets, and ampoules. The tablets used for prophylactic purposes usually contain 2 mg per daily dose. For therapeutic purposes, 10- to 150-mg tablets are taken one to three times daily.

The recovery of vitamin B6 as pyridoxine hydrochloride in a multivitamin premix not containing trace minerals was 100%, even after 3 months in storage at 37°C. However, stability in a premix containing trace minerals was poor, with only 45% recovery after 3 months at 37°C (Adams, 1982). Verbeeck (1975) found vitamin B₆ to be stable in premixes with minerals as sulfates. However, if minerals in the form of carbonates and oxides are used, 25% of the vitamin can be lost over a 3month period. Stress agents such as choline chloride help catalyze this destruction. Gadient (1986) considers pyridoxine to be very sensitive to heat, slightly sensitive to moisture and light, and insensitive to oxygen. Retention of B₆ activity in pelleted feeds after 3 months at room temperature should be 80 to 100% as a general rule. The retention of pyridoxine in an extruded fish meal fed after 1 month at room temperature was found to be 56%.

Data have acceled teled for the need of vitamia B₆ supplementation for humans, especially for young and prognant or lactating we or indiv univiolatism, aremia, urinary carculi, and in effort ciency). Vitamin B₆ supplements are commonly given when isoniazid is used in tuberculosis treatment and when penicillamine is used in the treatment of Wilson's disease. Vitamin B₆ supplements are also frequently given along with most anticonvulsant drugs. Reports indicate that mothers unsupplemented with vitamin B₆ produce milk low in the vitamin (Guilarte, 1993). Based on these studies, it is apparent that some degree of vitamin B₆ deficiency may be present in infants

whose sole source of nutrients is breast milk and whose supplemented with the vitamin (see Deficiency). Supp B₆ is needed by persons with the "Chinese restaurant sy dition in which individuals are sensitive to foods heavi monosodium glutamate (Folkers et al., 1981). Individ

Pro date: Exp date:

411

tunnel syndrome (pain and/or numbness in hands) require vitamin B₆ well in excess of the RDA requirement (LeKlem, 1991). Pyridoxine in pharmacological doses was useful in the management of kidney stones, decreasing urinary oxalate excretion in patients with recurrent oxalate renal calculi (Mitwalli, 1989). In doses of 10 to 25 mg, vitamin B₆ in-

Preface

Vitamin products began to be developed give an overview, our own several decades ago. Nevertheless, there is still much that is obscure in the pharmaceutical technology of vitamins. This ciated with this class of substances. The multivitamin products are unique in combining such a large number of active sub-stances with entirely different chemical structures and physical properties. This is compoundes by the fact that virtually all the vitamins are more or less unstabl when formulated and some of them inter-

There has been a large number of publications on the pharmaceutical technology of vitamin formulations. The intention of this text is not merely to review the literature. Although a wide selection of publications has been quoted in order to

sents a large proportion of the text and this is reflected by the many formulations which are specified, almost all of which were developed in the food products/ pharmaceuticals applications laboratories of BASF AG, Ludwigshafen, FRG. However, not all of them have been exami ned for chemical stability

On this basis, the present text aims to make the process of development of vitamin products intelligible and thus to aid pharmacists engaged in this work.

The entries have been arranged alphabetically to provide rapid access to the information, and this is facilitated by crossreferences and the key words which are

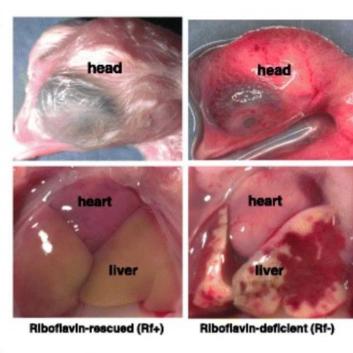
Spring 1988

Volker Bühler

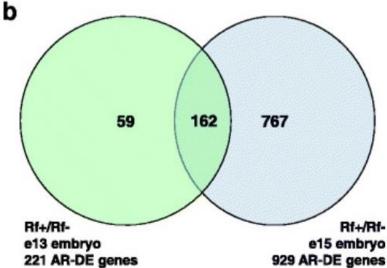
In the second edition of this book some amendements and actualizations were introduced. This concerns e. g. the situation of the Pharmacopoeias and other legal conditions. Furthermore several new formulations of vitamin combinations (e. g multivitamin syrup, vitamin C + E tablets, vitamin B complex injectable, multivitamin effervescent tablets, multivitamin tablets with minerals) and a great chapter of multivitamin solutions were added to impart an even better knowledge about the pharmaceutical technology of vitamins

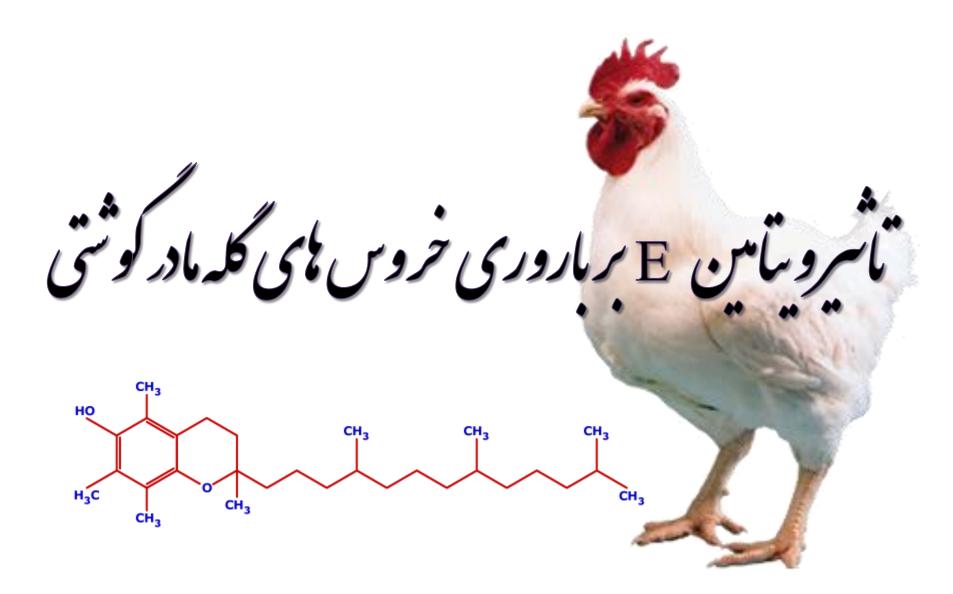
Since this book has the structure of a dictionary and many crosslinks between the individual sections are included it was decided to offer it also in an electronic form of the attached CD-ROM.

An alphabetical index of all formulations listed in the book was added.


September 2000

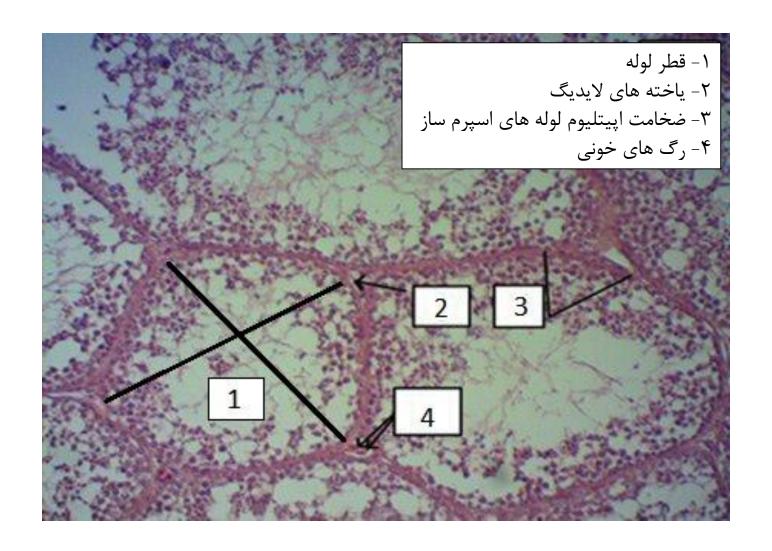
Volker Bühler

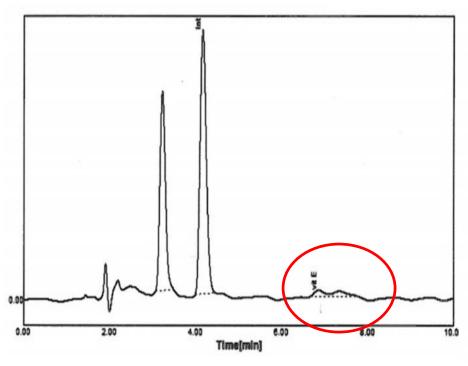

28

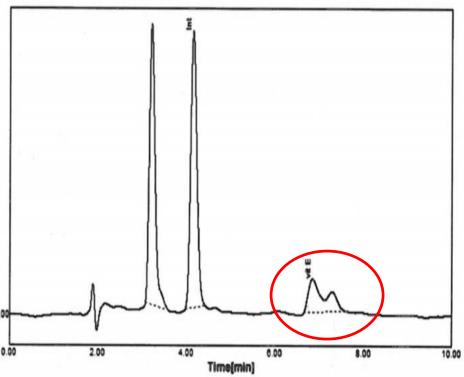

Transcriptional profiling of liver in riboflavindeficient chicken embryos explains impaired lipid utilization, energy depletion, massive hemorrhaging, and delayed feathering.

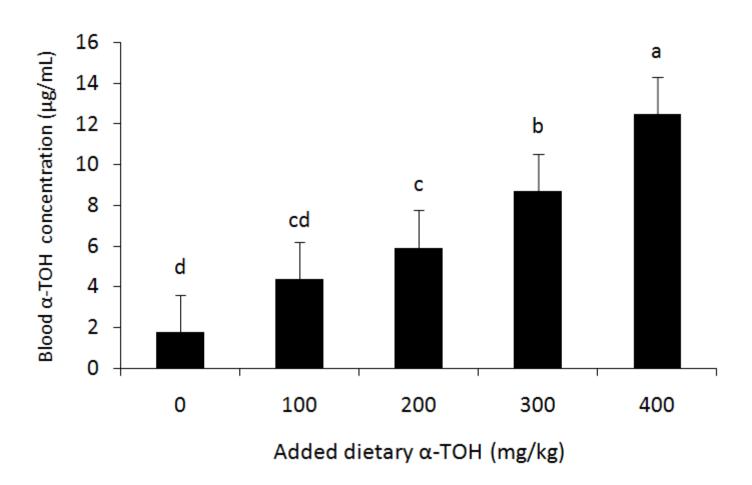
doi: 10.1186/s12864-018-4568-2.

а



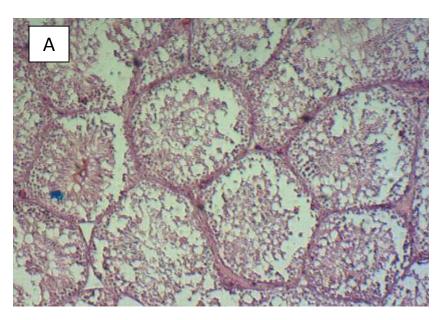

Materials and Methods



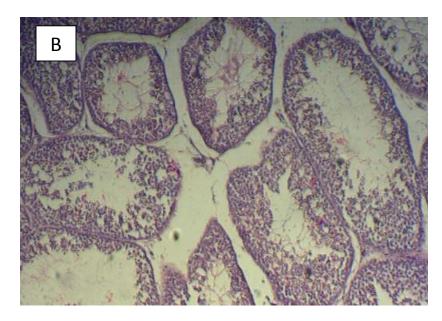


Results

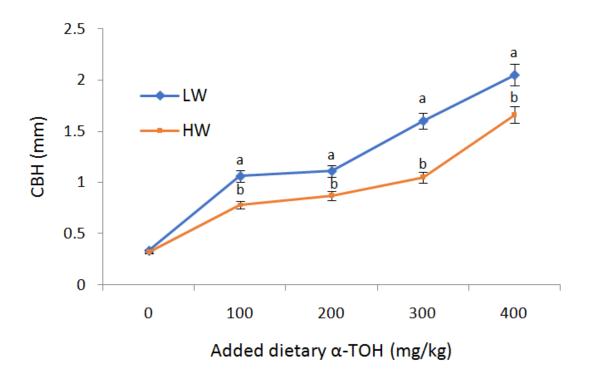
Results

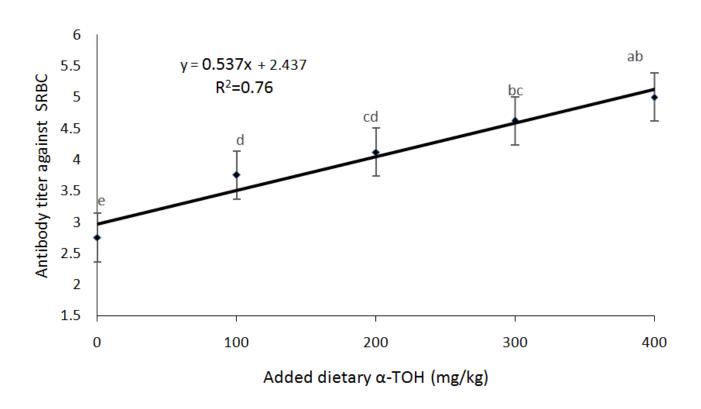


Influence of dietary α -TOH on blood concentration of α -tocopherol


Results

Weight	Vitamin E	Parameters						
category	doses	W. testis R	W. testis L	S. testis R	S. testis L	D. testis R	D. testis L	
		(g)	(g)	(mm)	(mm)	(mm)	(mm)	
S		24.03 ± 1.06	24.90 ± 1.04	47.04 ± 0.90	$46.73^{b} \pm 0.84$	$25.42^{b} \pm 0.37$	$25.29^{b} \pm 0.46$	
Н		24.43 ± 1.10	26.10 ±1.29	49.41 ± 1.00	$49.66^{a} \pm 0.89$	$27.60^{a} \pm 0.59$	$28.06^{a} \pm 0.53$	
	0	$19.75^{c} \pm 1.74$	$19.45^{c} \pm 1.72$	42.87 ^b ±1.79	$43.20^{b} \pm 1.40$	$24.15^{c} \pm 0.89$	$24.36^{b} \pm 0.83$	
	100	22.01 ^{bc} ±1.66	$23.66^{bc} \pm 1.87$	48.16^{a} ± 1.48	$47.41^a \pm 1.28$	25.57 ^{bc} ±0.54	$26.39^{ab}\ \pm 0.92$	
	200	24.81 ^{ab} ±1.61	$27.45^{ab} \pm 2.17$	$49.86^{a} \pm 1.16$	$50.25^a \pm 0.96$	$26.91^{ab} \pm 0.90$	$26.79^a \pm 1.08$	
	300	$27.08^{a} \pm 1.59$	$27.166^{ab} \pm 1.19$	$49.91^a \pm 1.01$	$49.58^a \pm 1.07$	28.10^{a} ± 0.77	27.58 ^a ±0.62	
	400	27.58^{a} ± 0.66	$29.33^a \pm 0.59$	$50.35^{a} \pm 1.07$	$50.63^a \pm 1.35$	27.75 ^a ±0.55	$28.16^{a} \pm 0.67$	
	BW	0.8012	0.4616	0.0507	0.0058	0.0009	0.0001	
P- Value	VE	0.0028	0.0011	0.0010	0.0002	0.0007	0.0066	
	BW×VE	0.8319	0.9865	0.8605	0.7937	0.7644	0.9226	


Weight	Vitamin	Parameters					
category	E doses —	Seminiferous tubules diameter (µm)	Seminiferous epithelium thickness (µm)	Leydig cells (n)	Blood vessels (n)		
S		231.75 ±11.12	59.89 ± 2.45	28.49 ± 1.09	1.94 ± 0.05		
Н		243.94 ±12.97	61.47 ± 3.25	29.50 ± 1.27	1.90 ± 0.06		
	0	179.50°±9.92	47.722 ^d ±1.22	$24.080^d \pm 0.87$	1.758°±0.058		
	100	224.40 ^b ±11.88	53.756 ^{cd} ±1.60	25.333 ^d ±0.48	$1.770^{c} \pm 0.047$		
	200	233.88 ^b ±12.95	60.733bc ±3.30	28.042°±0.64	1.866 ^{bc} ±0.069		
	300	$255.39^{b} \pm 7.55$	67.724 ^{ab} ±3.54	32.042 ^b ±0.956	$2.033^{ab} \pm 0.033$		
	400	297.54 ^a ±10.90	72.160 ^a ±3.90	35.133 ^a ±1.203	2.200° ±0.079		
P- Value	BW	0.1919	0.5746	0.1438	0.4704		
	VE	<.0001	0.0003	.0001	0.0001		
	BW×VE	0.2935	0.3296	0.0550	0.5423		


مقطع بیضه خروس سنگین تیمار ۴۰۰ میلی گرم در E کیلو گرم ویتامین

مقطع بیضه خروس سنگین گروه کنترل کاهش تعداد اسپرماتوگونی و واکوئلها در اپیتلیوم

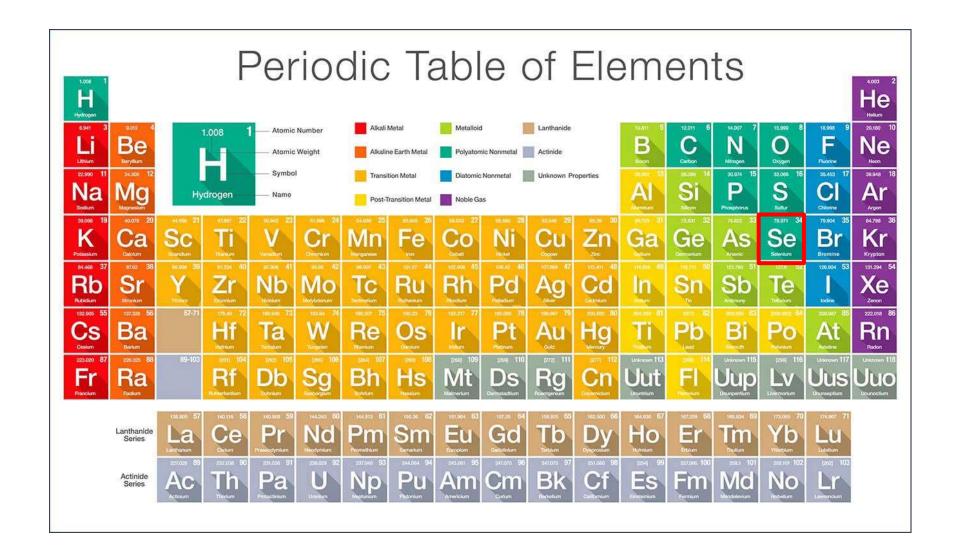
Effect of dietary graded levels of α -TOH and body weight of rosters on cell mediated immunity (CBH)

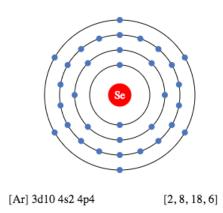
The relationship between graded levels of α -TOH and humoral immunity (SRBC)

Analysis of the relationship between dependent (CBH, AIV, NDV and SRBC) and independent variable α -TOH. The main effect of two BW type (LW and HW) and 5 different levels of α -TOH (0, 100, 200, 300, 400 mg/kg diet) on rooster's immune parameters (Means \pm SE).

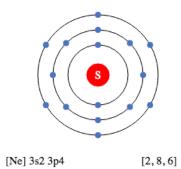
Factors		Parameters						
Tuctors		CBH (mm)	AIV ² W5	AIV ² W10	NDV^2 W5	NDV^2W10	SRBC ²	
BW	sw	1.23 ± 0.15	4.46± 0.16	5.93 ± 0.20	4.67 ± 0.12	6.40 ±0.21	4.10 ±0.20	
ЬW	HW	0.93b ±0.10	4.57 ±0.15	6.13 ± 0.29	4.58 ± 0.15	6.46 ±0.32	4.00 ±0.20	
	0	0.33d ±0.05	4.91d ±0.23	5.00° ± 0.32	4.08b ± 0.08	5.16° ±0.30	2.75°±0.17	
	100	0.92° ±0.15	5.33° ±0.22	$5.50^{bc} \pm 0.34$	$4.53^{ab} \pm 0.20$	$5.83^{\circ} \pm 0.30$	3.75d ±0.16	
α-ТОН	200	0.99° ±0.11	5.33° ±0.14	$6.33^{ab} \pm 0.21$	$4.66^{ab}\pm0.18$	6.50bc ±0.22	4.12 ^{cd} ±0.22	
	300	1.33b ±0.10	$5.85^{ab}\pm0.29$	$6.50^a \pm 0.22$	$4.75^{a} \pm 0.14$	$7.16^{\text{ab}} \pm 0.16$	$4.62^{bc}\pm0.18$	
	400	1.85°±0.21	$6.16^a \pm 0.16$	$6.83^{a} \pm 0.47$	$5.08^{a} \pm 0.25$	7.50° ±0.22	$5.00^{ab}\pm0.17$	
	BW	0.0175	0.5804	0.4992	0.6418	0.7661	0.5319	
P- Value	α-TOH	0.0001	0.0013	0.0039	0.0222	0.0001	0.0001	
	$BW{\times}\alpha\text{-}T$	0.6907	0.2593	0.9897	0.8532	0.2532	0.9615	
	Linear BW	0.0175	NS	NS	NS	NS	NS	
	Linear α-TOH	0.0001	0.0001	0.0002	0.0023	0.0001	0.0001	
	R-Square	0.6618	0.3504	0.5302	0.2231	0.7662	0.7648	
	Quadratic α-TOH	NS	NS	NS	NS	NS	NS	
	Exponential α -TOH	NS	NS	NS	NS	NS	NS	

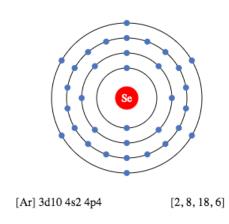
AIVW5: Avian influenza virus week5, AIVW10: Avian influenza virus week10 CBH: Cutaneous basophil hypersensitivity, NDVw5: Avian Newcastle virus week5.NDVw10: Avian Newcastle virus week10 SRBC: sheep red blood cell. Different superscripts (A and B) for BW, (a-e) tor VE levels within the same line differ significantly.

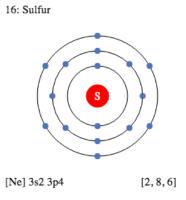

Waiaki		Parameters						
Weight category	Type/Levels	Cholesterol (mg/dl)	AST (mg/dl)	TG(mg/dl)	HDL(mg/dl)	LDL(mg/dl)	α-TOH.con. (μg/mL)	Liver Weight (g)
BW	S	131.60± 5.64	288.33±15.81	$60.13^{\rm B} \pm 2.96$	89.13 ± 3.31	31.53 ± 1.88	7.39 ± 1.17	42.53 ^B ±0.97
	Н	134.93 ±6.70	306.13±23.47	$68.60^{\rm A} \pm 2.66$	92.06 ± 2.61	40.40 ± 3.62	5.93 ± 1.02	$45.66^{A}\pm1.04$
	0	146.00°±9.07	383.50°±18.85	$78.66^a \pm 1.94$	$79.66^b \pm 6.26$	39.83 ±7.99	$1.77^{d}{\pm}0.31$	$41.08^b \pm 0.97$
	100	134.50 ^b ±7.74	297.16 ^b ±36.99	$68.50^{bc} \pm 2.24$	$88.33^{ab} \pm 3.32$	36.50 ±4.08	$4.38^{cd} \pm 0.69$	$43.00a^{b}\pm1.49$
α-ТОН	200	123.83 ^b ±5.64	289.16 ^b ±17.50	$60.50^{\rm cd} \pm 3.89$	$91.83^{ab} \pm 5.08$	36.16 ±6.20	5.92° ±0.56	43.15 ^{ab} ±1.74
	300	122.33b±7.24	287.83 ^b ±22.42	$58.00^d \pm 3.41$	93.16a ± 1.70	35.66 ± 2.87	$8.69^{b}\pm0.92$	46.50° ±1.71
	400	121.66 ^b ±7.47	228.50 ^b ±26.24	$56.16^d \pm 4.96$	$100.00^a \pm 1.93$	31.66 ± 1.54	$12.50^{a}\pm1.49$	46.75° ±1.82
	BW	0.6562	0.4632	0.0042	0.4599	0.0649	0.0913	0.0298
P- Value	α-ТОН	0.0075	0.0108	0.0001	0.0472	0.8553	0.0001	0.0544
	$BW{\times}\alpha\text{-TOH}$	0.9652	0.7005	0.3527	0.8617	0.8402	0.9253	0.9569

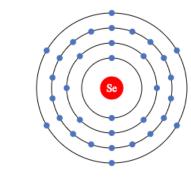

Trace-Minerals Requirements / Recommendations for Broiler Breeders

- Lack of research, especially involved with impacts in the progeny
- Some published recommendations has no basis in research

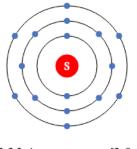

Mineral (ppm)	Rostagno 2017	Aviagen 2016	Cobb-Vantress 2013	NRC 1994
Cu	9.94	10	15	-
Fe	45.8	50	55	60
Zn	65.1	110	110	45
Mn	70.0	120	120	20
Se	0.30	0.30	0.30	0.06
1	1.01	2.00	2.00	0.10

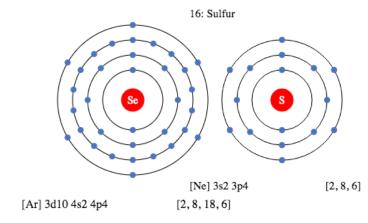

34: Selenium

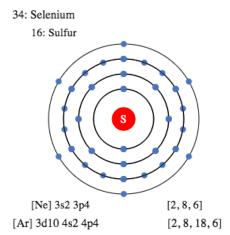




34: Selenium





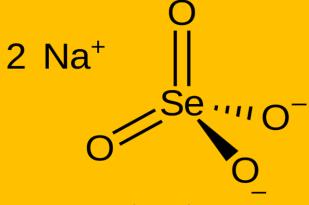


- The discovery of Se essentiality in early 1960s.
- The discovery in 1973 that glutathione peroxidase is a selenoprotein.
- Characterisation of main selenoproteins in nutrition and health in 2003.

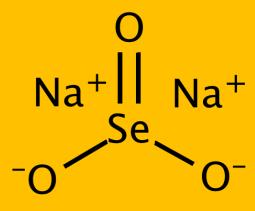
New insight

The role of free radicals as signalling molecules, understanding the role of nutrients in gene expression and maternal programming, tremendous progress in human and animal genome.

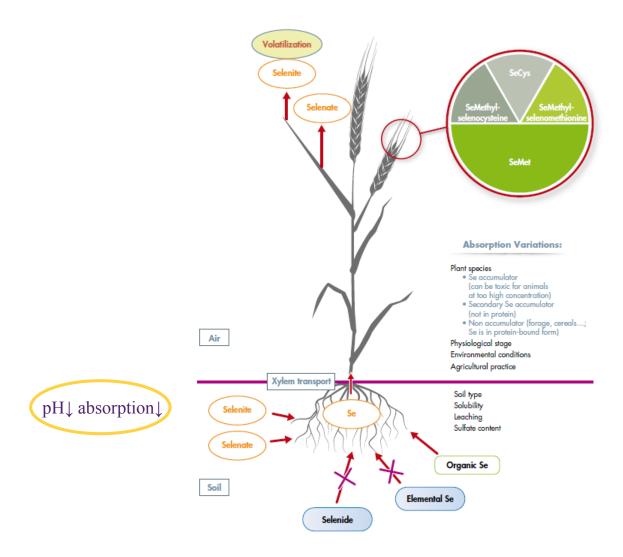
Elemental selenium


 Se^0

Inorganic selenium compounds


Selenite (SeO₃⁻⁻), Selenate (SeO₄⁻⁻), Selenide (Se⁻⁻)

Organic selenium compounds


Sodium Selenate

Sodium Selenite

Functions

- Acute
- Sub-acute
- Chronic poisoning (alkali disease)

Ataxia

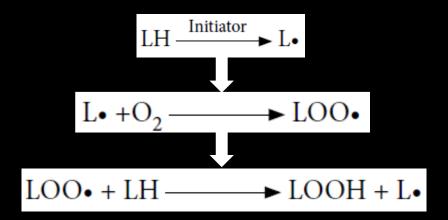
Diarrhoea

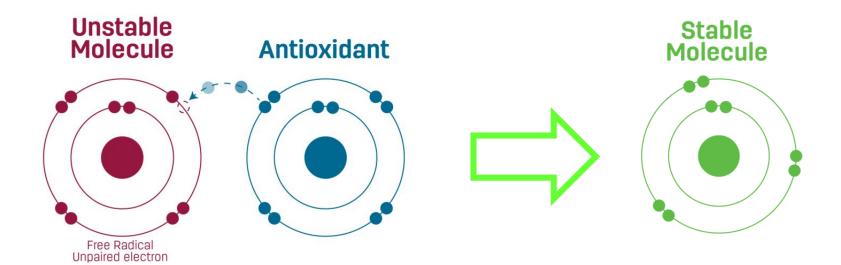
Death

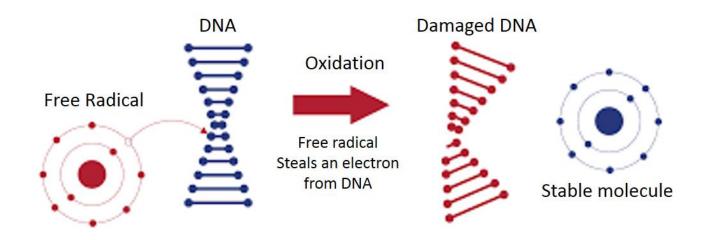
Garlic odour

Hair loss

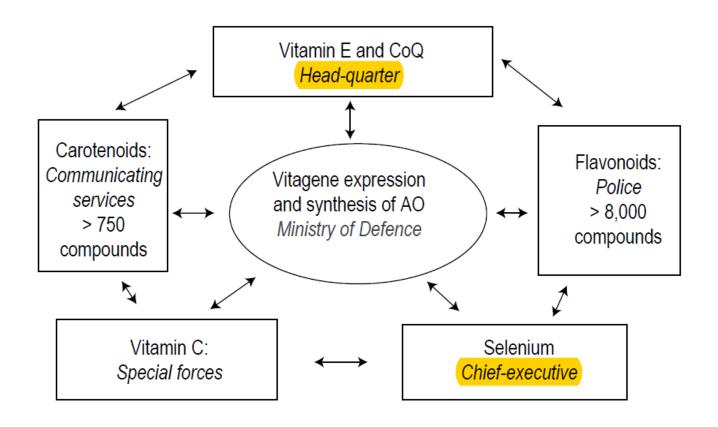
Growth retardation

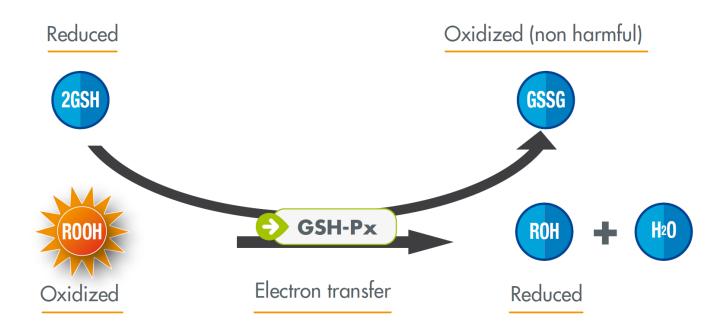

Selenium acid > selenite > selenate > selenocysteine > methylated selenium compounds

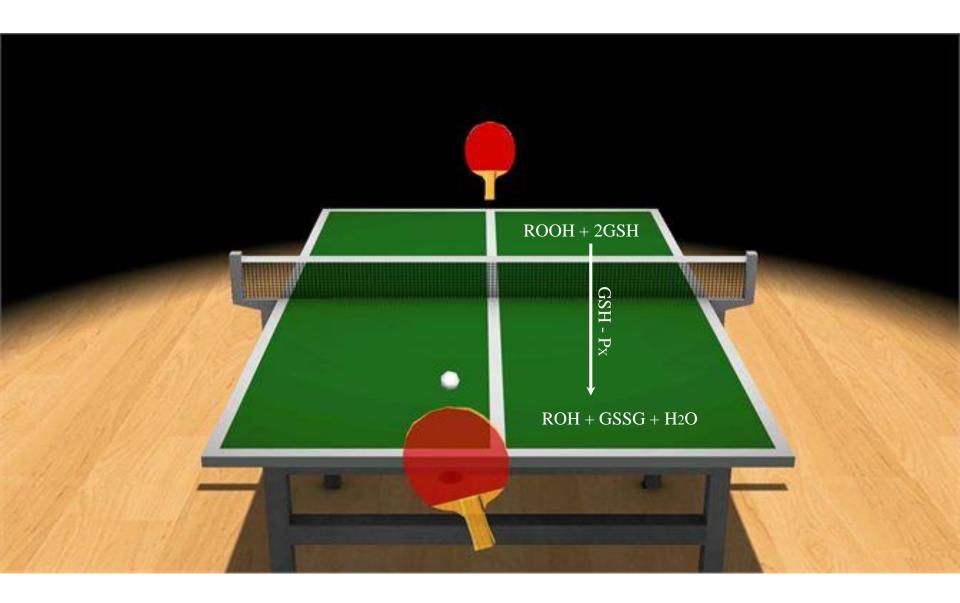

Functions

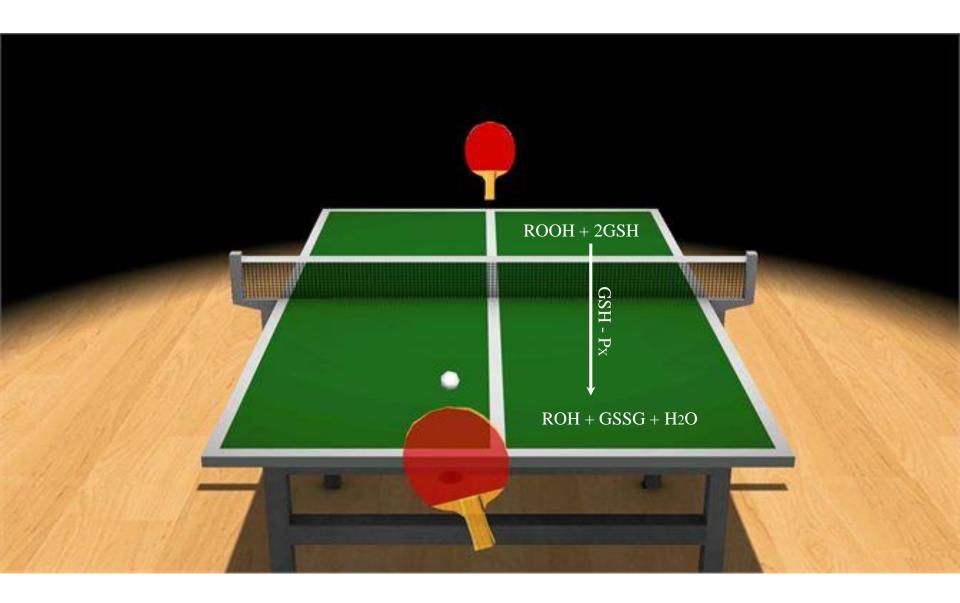

- Selenium dependent enzymes Glutathione peroxidase Deiodinases
- Other functions
 Immune response
 Complex with heavy metals (Cd, Hg & Ag)


Functions

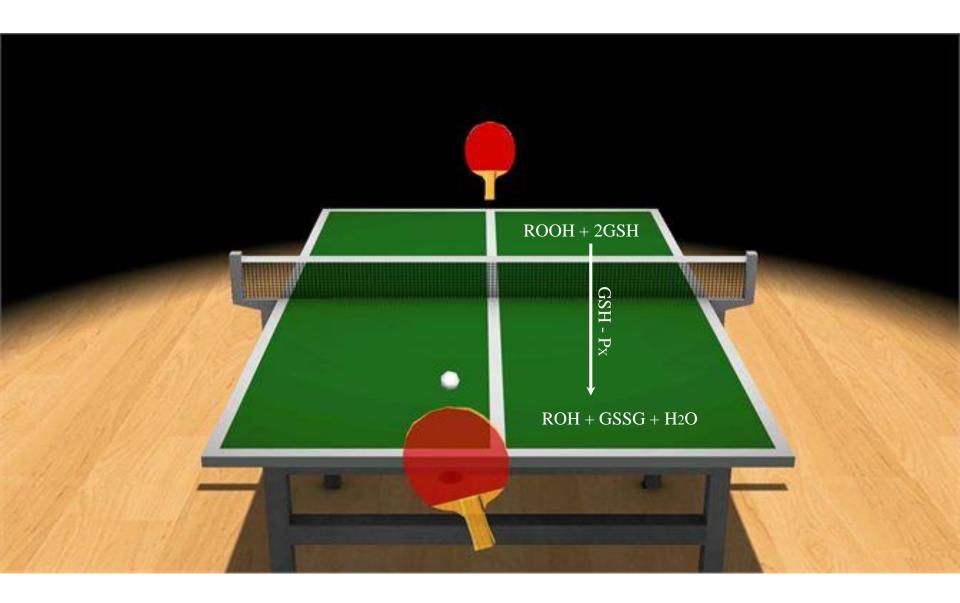

Self-preservation is the first law of nature

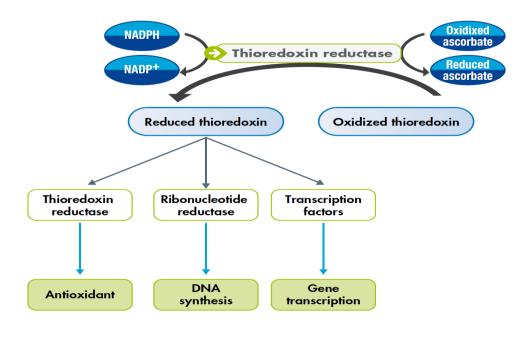





- 4 different GSH-Px in avian species

Different biological roles:


- Prevention of lipid peroxidation
- ROS detoxification
- Specific role of GSH-Px 4 in male fertility



TrxR plays a role in:

- Cell growth
- Inhibition of apoptosis
- Cellular sensitivity to glucocorticoids
- Immunomodulation
- Pregnancy and birth
- Neuronal survival

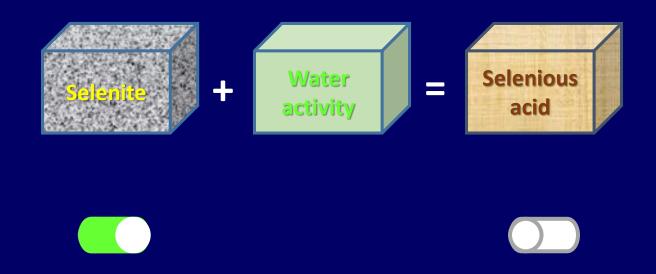
Other selenoproteins

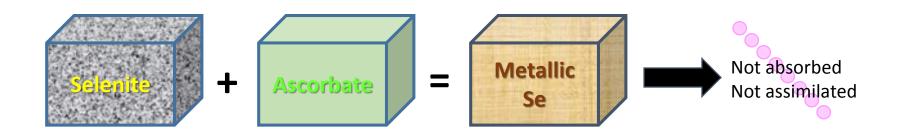
- I. Iodothyronine deiodinases
- II. Selenophosphate synthetase-2
- III. 15-kDa selenoprotein
- IV. Selenoprotein H
- V. Selenoprotein I
- VI. Selenoprotein K
- VII. Selenoprotein M
- VIII. Selenoprotein N
- IX. Selenoprotein O
- X. Selenoprotein P
- XI. Selenoprotein Pb
- XII. Selenoprotein R
- XIII. Selenoprotein S
- XIV. Selenoprotein T
- XV. Selenoprotein U
- XVI. Selenoprotein W

Selenoprotein location in chicken

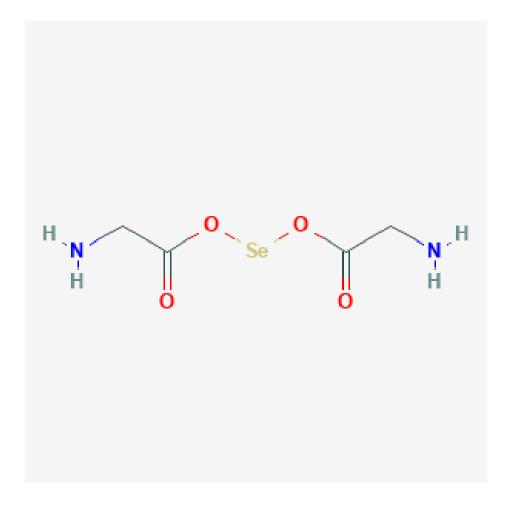
Location/feature	Selenoproteins				
Inside the cell	GSH-Px1, GSH-Px2, GSH-Px4, DIO1, DIO2, DIO3, TrxR1, TrxR2, TrxR3, Sep15, SelH, SelI, SelK, SelM, SelN, SelO, SelT, SelU, SelW, MsrB1, SPS2				
Outside the cell/secreted	SelPa, SelPb and GSH-Px3				
Endoplasmic reticulum	DIO1, DIO2, DIO3, Sep15, Sell, SelK, SelM, SelN SelS and SelT				
Mitochondria	GSH-Px1, GSH-Px2, GSH-Px4, TrxR1, TrxR2, TrxR3, SelM, SelO and SelU				
Cytoplasm	GSH-Px1, GSH-Px2, GSH-Px4, TrxR1, TrxR2, TrxR3 and SelW				
Nucleus	GSH-Px4, MsrB1 and SelH				
Golgi apparatus	SelT				
Membrane	Sell				
Membrane-bound	Sell, SelK, SelS, SelT, DIO1 and DIO3				
Zn-containing	Sep15, MsrB1, SelW and SelM				
POP-containing	GSH-Px1, GSH-Px2, GSH-Px3 and GSH-Px4				
Thioredoxin-like fold-containing	GSH-Px1, GSH-Px2, GSH-Px3, GSH-Px4, DIO1, DIO2, DIO3, TrxR3, SelT, SelH, SelW, Sep15, SelM, SelU and SelO				
Flavin adenine dinucleotide-interacting	TrxR1, TrxR2 and TrxR				

Antioxidant Defences

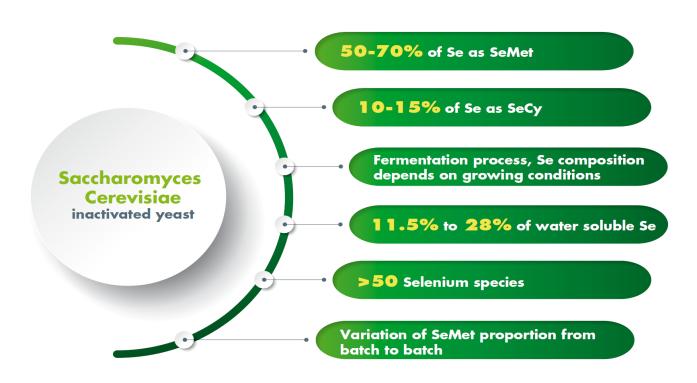

25 known
SelenoProteins/2
25 known
SelenoProteins/2


- AO defence Cell proliferation
- DNA-repair systems Cell differentiation
- Transfer of genetic information Stability of cell membrane
- Stress protein synthesis Stability of intracellular milieu
- Proteosomal function Macromolecular turnover
- Neutralisation and removing toxic chemicals Stress response
- Tissue regeneration and wound healing Hormonal response
- Tumour suppression Immune response
- Cell death and cell replacement Thermoregulation
- Neuronal response

In particular, it was proven in an university-conducted trial that inclusion of antistress composition (PerforMax) into the drinking water improved chicken growth and feed conversion ratio (FCR; Fotina et al., 2011, 2014). Using the same anti-stress composition under commercial conditions improved FCR during a 39 day broiler growth trial. The improvement in FCR due to the anti-stress composition during the first three days post-hatch, as well as before and after vaccination was highly significant (Velichko and Surai, 2014; Velichko et al., 2013). The importance and efficacy of the anti-stress composition for rearing birds and adult egg type parent stock (Hy-Line) at anti-stress composition for rearing birds and adult egg type parent stock (Hy-Line) are one of the biggest egg producing farms in Russia (Borovskaya poultry farm, Tumen region) have been recently reviewed (Shatskich et al., 2015).

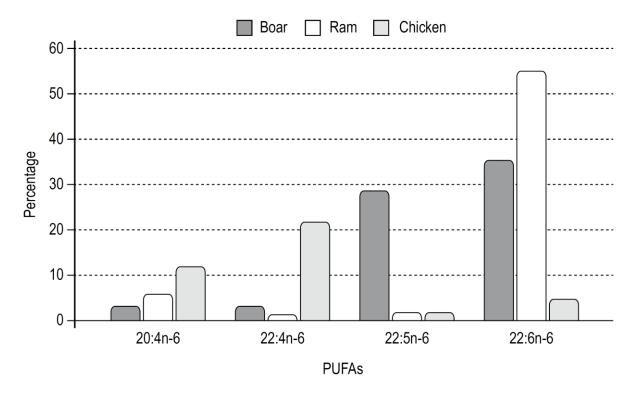


Chelated Selenium products


Se-glycinates
Se-proteinates
Se-amino acids complexes

The chemical position of Se in the periodic table of elements indicates that Se is not a true metal, and therefore its chelating ability is in question.

Chelated Se products are not related to SeMet or SeCys and, probably, should not be included into the organic Se category.



Selenium-enriched yeast

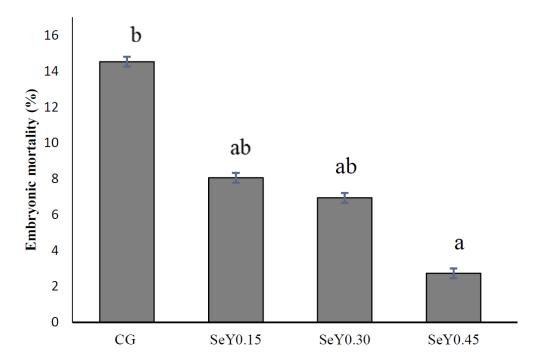
Polyunsaturated fatty acids (PUFAs) in spermatozoa phospholipids, % (adapted from Surai, 2002). 20:4n-6 = arachidonic acid; 22:4n-6 = docosatetraenoic acid; 22:5n-6 = docosapentaenoic acid; 22:6n = 3 docosahexaenoic acid.

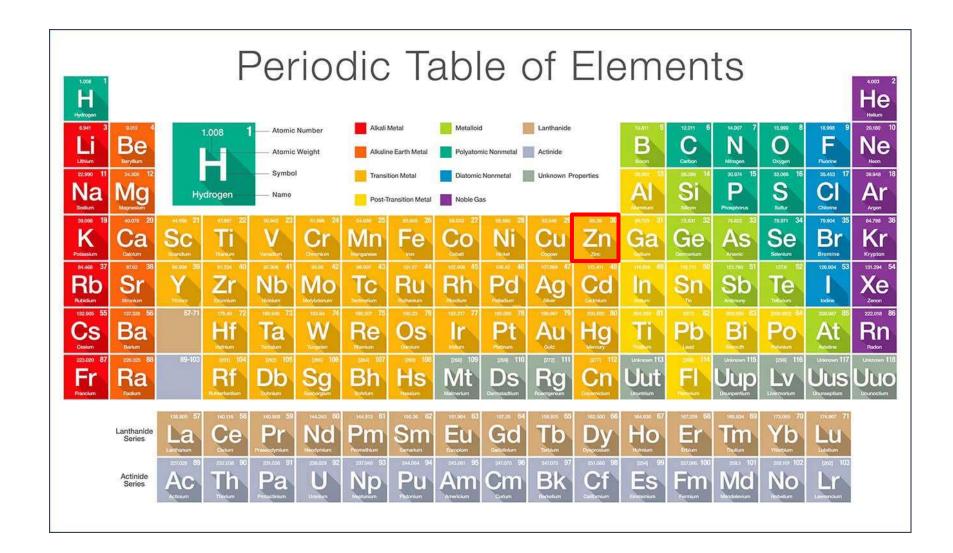
Contents lists available at ScienceDirect

Theriogenology

journal homepage: www.theriojournal.com

An improvement in productive and reproductive performance of aged broiler breeder hens by dietary supplementation of organic selenium




Mojtaba Emamverdi ^a, Ahmad Zare-Shahneh ^{a, *}, Mahdi Zhandi ^{a, **}, Mojtaba Zaghari ^a, Dariush Minai-Tehrani ^b, Mahdi Khodaei-Motlagh ^c

^a Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran

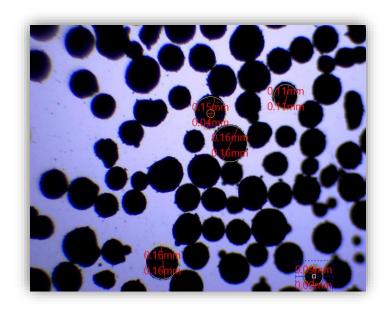
^b Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, 16589-53571, Iran

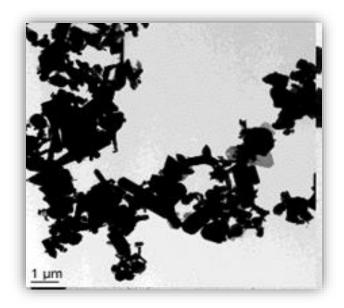
^c Department of Animal Science, Faculty of Agricultural and Natural Science, University of Arak, Arak, 38156-88349, Iran

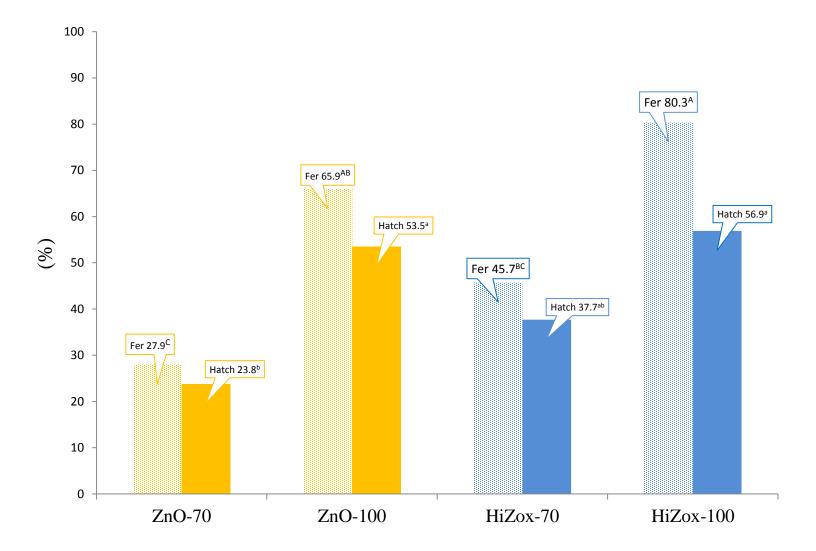
- Essential trace element
- Cofactor in more than 300 enzymes
- Required for the structural and functional integrity of over 2000 transcription factors and almost every signaling and metabolic pathway is dependent on one or more zinc-requiring proteins
- Cell growth and proliferation is strictly depend on zinc (immune system, skin, reproductive system)
- Gene expression
- Appetite control
- Protein, carbohydrate and fat metabolism
- Antioxidant defense
- No storage system for zinc

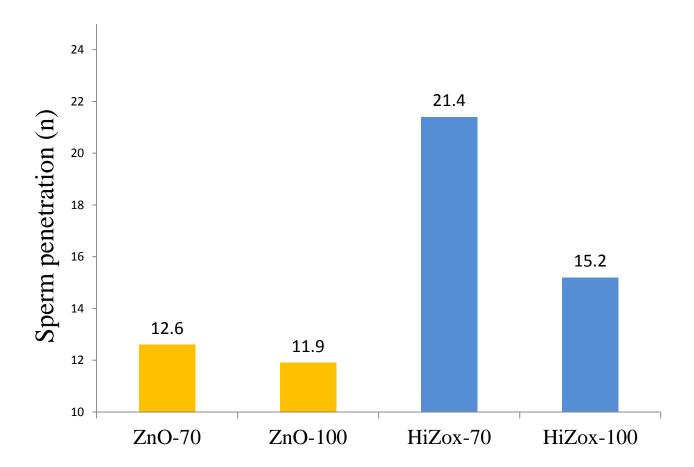
Some studies showing the zinc requirement of broiler chickens

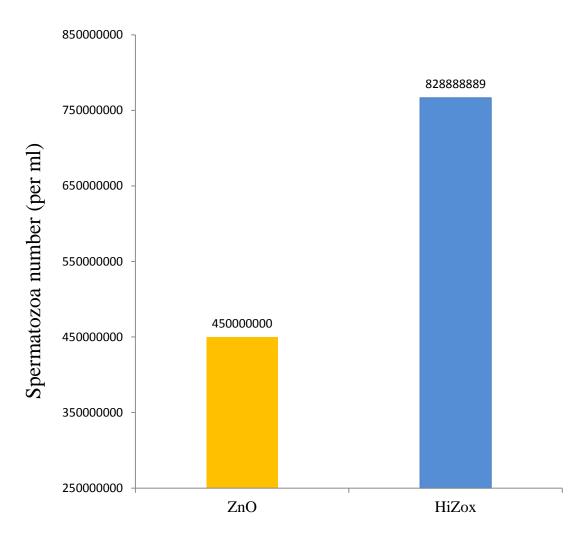
References	Year	Sex	Age (Day)	Diet type	Traits evaluated	Estimated requirement (mg kg ⁻¹)
Rossi, et al.	2007	\mathbf{M}^{a}	0-42	Corn-soy	Skin tearing	105
Vieira et al.	2013	M	0-42	Corn-soy	Footpad integrity	100
Gomez	2008	M and F	8-21	Practical	Tibia Zn	86
Huang et al.	2007	M	0-21	Corn-soy	Weight gain	84
Mohanna and Nys	1999	-	5-21	Corn-soy	Tibia and plasma Zn	75
Bao et al.	2009	-	14-35	-	Weight gain	68
Xiudong Liao et al.	2013	-	22-42	Corn-soy	Tibia Zn	62
Ao et al.	2007	\mathbf{M}	0-21	Corn-soy	Weight gain	37
Wedekind and Baker	1990	\mathbf{M}	8-12	Semi purified	Weight gain	33
Ao et al.	2006	\mathbf{M}	0-21	Corn-soy	Weight gain	32.8
Steinruck and Kirchgessner	1993	-	72-107	Semi purified	Weight gain	32
Zeigler et al.	1961	-	-	Semi purified	Weight gain	28
Batal <i>et al</i> .	2001	\mathbf{F}^{b}	1-3	Semi purified	Weight gain	27.1
Dewar and Downie	1984	M and F	0-3	Purified	Live weight	18
Emmert and Baker	1995	-	8-22	Purified	Weight gain	10.6

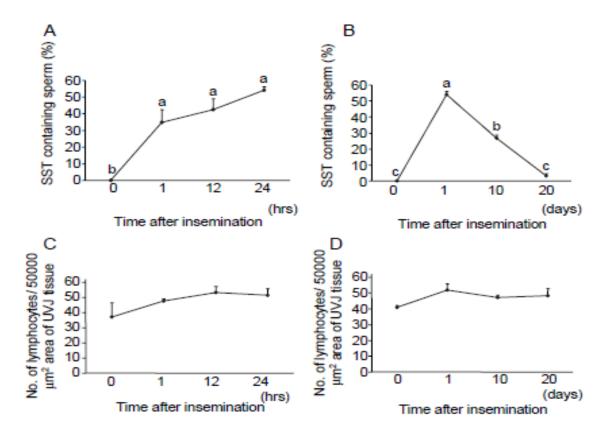

^a Male, ^b Female.


Feed Ingredients	Zinc content (mg/kg)
Corn	18
Soybean meal	40
Wheat	34
Wheat bran	100
Barley	30
Canola meal	71
Corn gluten	33


What does it means?


Natural Zn concentrations in feedstuffs are generally lower than the daily Zn requirement for broiler chickens leading to the necessity of dietary Zn supplementation.


	مقايسه خصوصيات فيزيكى انواع اكسيد روى									
ين	ناصر سنگ	ودگی به عا	آلو	نسبت سطح به	رنگ	قابلیت میکس شدن	زاویه ریزش (درجه)	شكل	اندازه ذرات (μm)	منبع اکسید روی
دی اکسین (ng)	سرب (ppm)	کادمیوم (ppm)	آرسنیک (ppm)	وزن (m2/g)						
1/۵	۲٠	۲	۵	**	كرم	خوب	۲۸	صفحهای	کمتر از ۱۰۰	اکسید روی فعال شده
1/0	٨٠	11	١.	4/7	سفيد	ضعيف	۳۵	میلهای	۱۰۰۰ تا ۱۰۰۰	اکسید روی معمولی



Effect of zinc sources on concentration of spermatozoa (cell number per ml of semen) at week 65 (P<0.06, SE 113955511).

عوامل موثر بر زندهمانی اسپرم در SST تاثير عامل

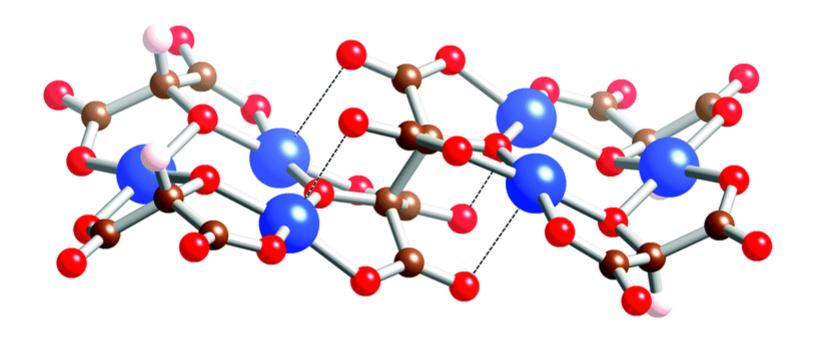
عوامل موثر بر زندهمانی اسپرم در SST عامل تاثير کربنیک آنهیدراز کاهش pH و کاهش تحرک اسپرم

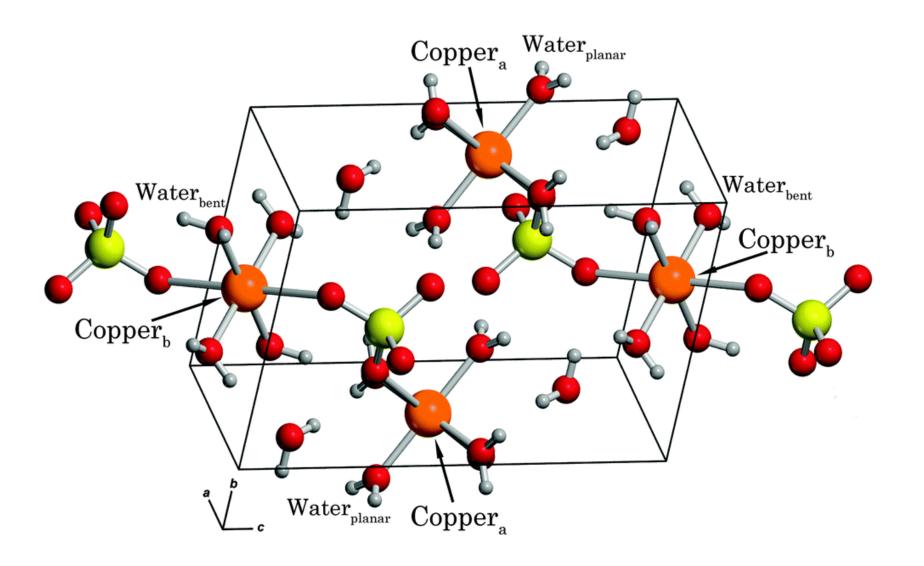
عوامل موثر بر زندهمانی اسپرم در SST تاثير عامل كربنيك آنهيدراز کاهش pH و کاهش تحرک اسپرم آلكالين فسفاتاز انتقال لیپید ها از غشاء ریز پرزهای SST

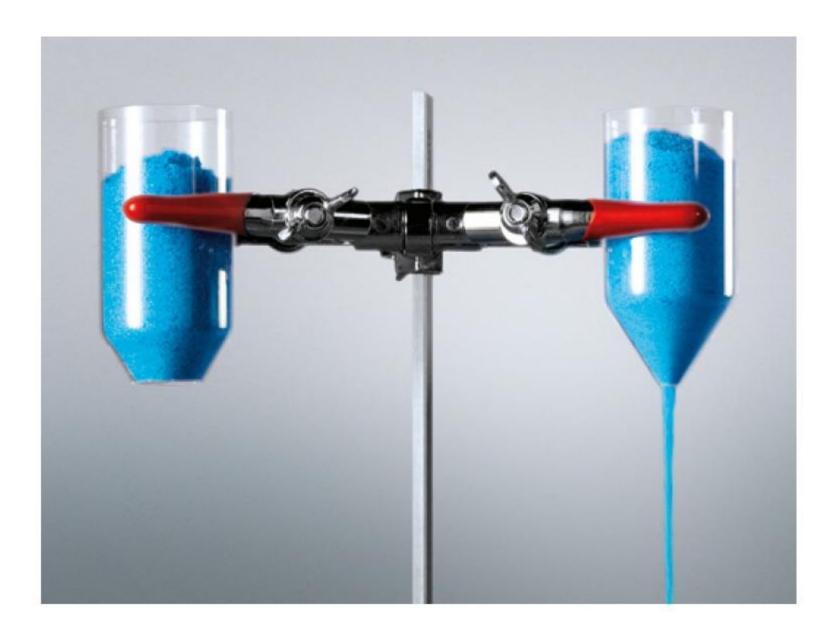
عوامل موثر بر زندهمانی اسپرم در SST تاثير عامل كربنيك آنهيدراز کاهش pH و کاهش تحرک اسپرم انتقال لیپید ها از غشاء ریز پرزهای SST آلكالين فسفاتاز حذف کاتابولیتهای اسپرم که طی دوره ذخیره اسپرم در لولهها تجمع یافتهاند آکواپورینها

عوامل موثر بر زندهمانی اسپرم در SST تاثير عامل کاهش pH و کاهش تحرک اسپرم كربنيك آنهيدراز انتقال لیپید ها از غشاء ریز پرزهای SST آلكالين فسفاتاز حذف کاتابولیتهای اسپرم که طی دوره ذخیره اسپرم در لولهها تجمع یافتهاند آکواپورینها آکواپورینها منشاء مواد مغذی بیوتین و ویتامینهای مشابه است. نشان دهنده فعالیت پروژسترون و آويدين ارتباط آن با ذخيره طولاني مدت اسپرم

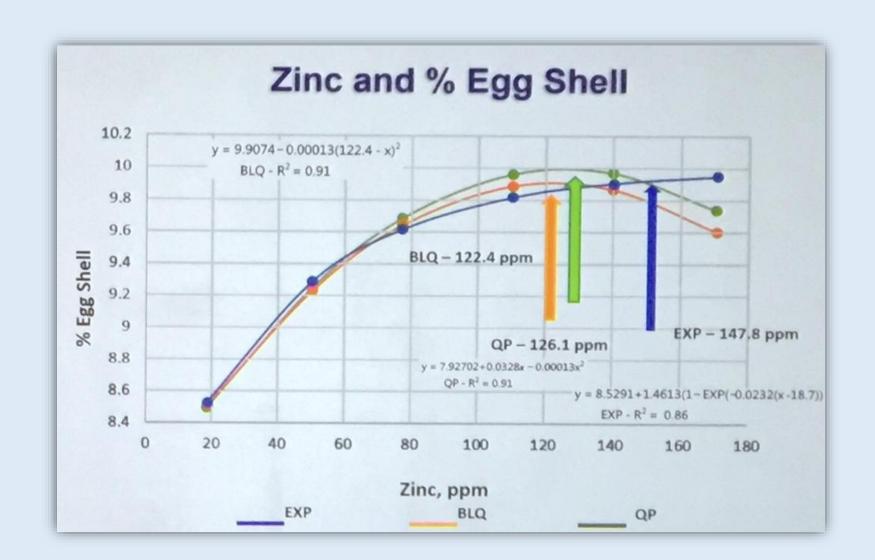
عوامل موثر بر زندهمانی اسپرم در SST

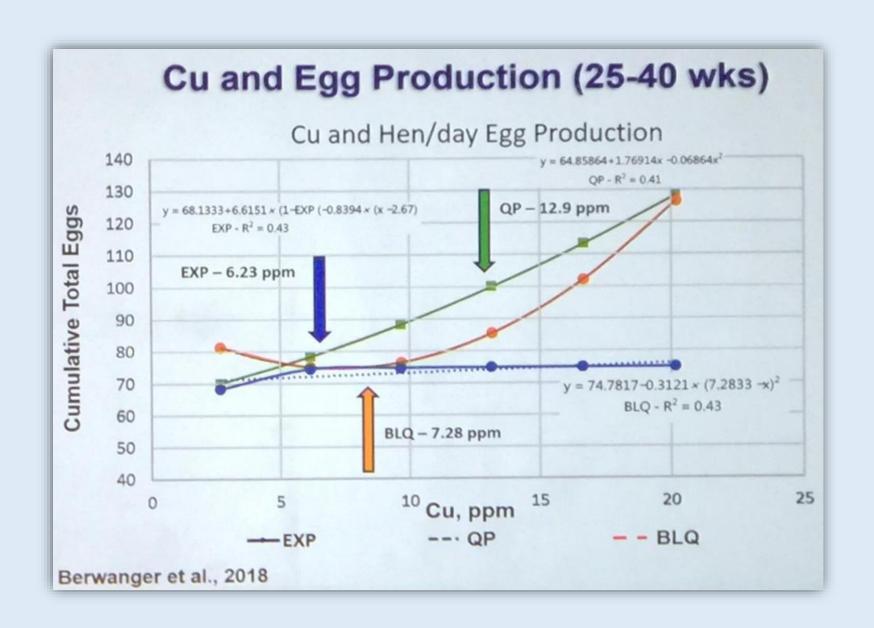

تاثير	عامل
کاهش pH و کاهش تحرک اسپرم	كربنيك آنهيدراز
انتقال لیپید ها از غشاء ریز پرزهای SST	آلكالين فسفاتاز
حذف کاتابولیتهای اسپرم که طی دوره ذخیره اسپرم در لولهها تجمع یافتهاند	آکواپورینها
منشاء مواد مغذی بیوتین و ویتامینهای مشابه است. نشاندهنده فعالیت پروژسترون و ارتباط آن با ذخیره طولانی مدت اسپرم	آويدين
حفاظت از غشاء اسپرم در برابر اکسیداسیون در SST	آنتیاکسیدانها

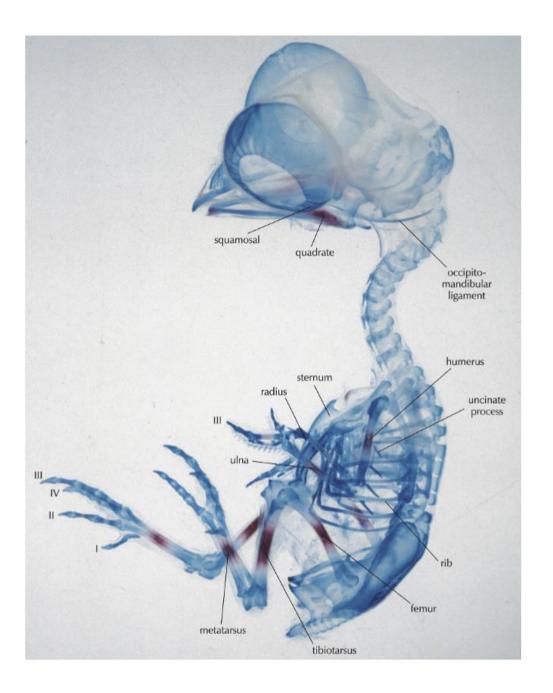

عوامل موثر بر زندهمانی اسپرم در SST

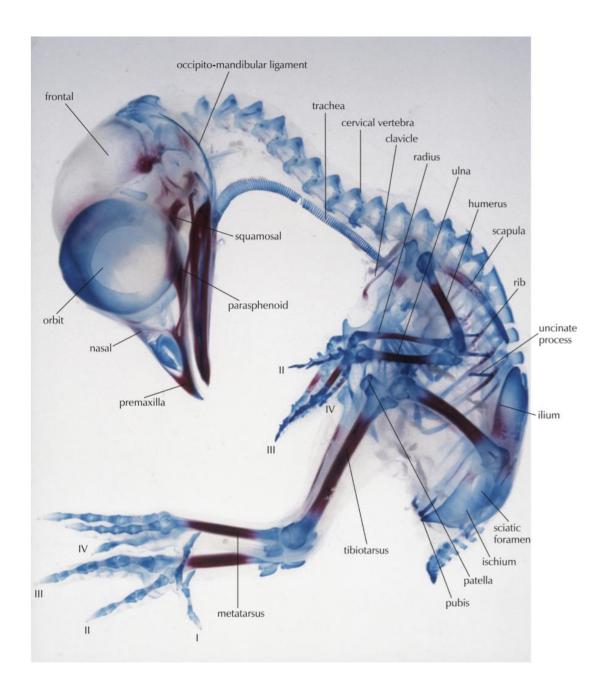

تاثير	عامل
کاهش pH و کاهش تحرک اسپرم	کربنیک آنهیدراز
انتقال لیپید ها از غشاء ریز پرزهای SST	آلكالين فسفاتاز
حذف کاتابولیتهای اسپرم که طی دوره ذخیره اسپرم در لولهها تجمع یافتهاند	آکواپورینها
منشاء مواد مغذی بیوتین و ویتامینهای مشابه است. نشاندهنده فعالیت پروژسترون و ارتباط آن با ذخیره طولانی مدت اسپرم	آويدين
حفاظت از غشاء اسپرم در برابر اکسیداسیون در SST	آنتیاکسیدانها
کاهش پاسخ ایمنی و جلوگیری از التهاب	TFGβ

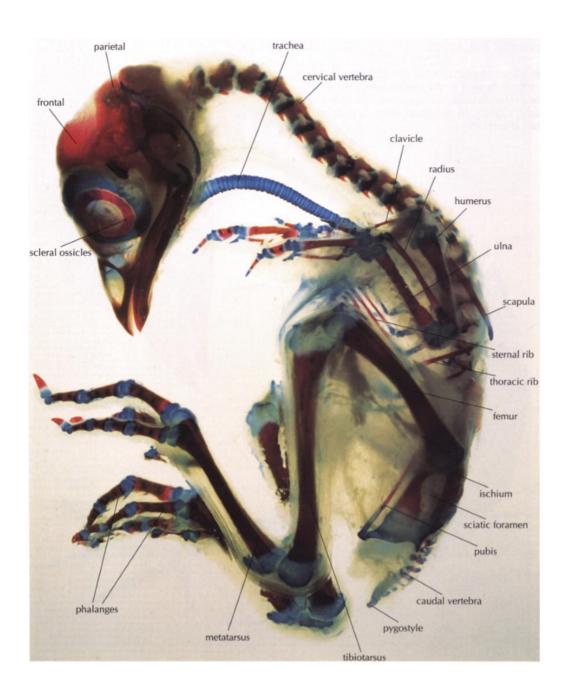


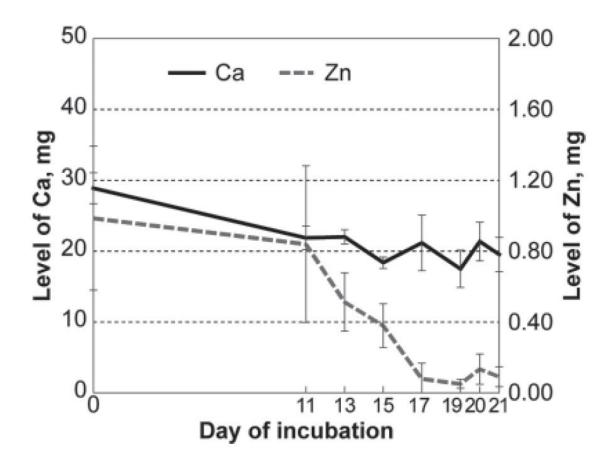


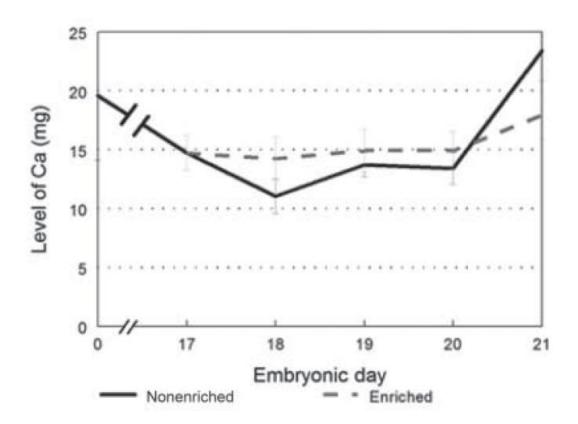


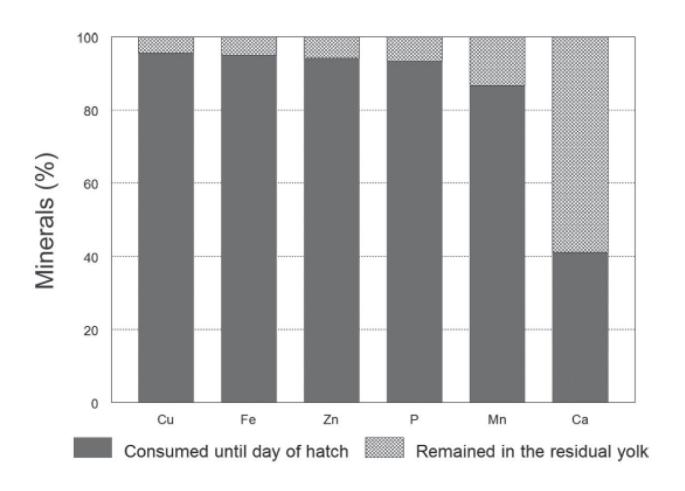










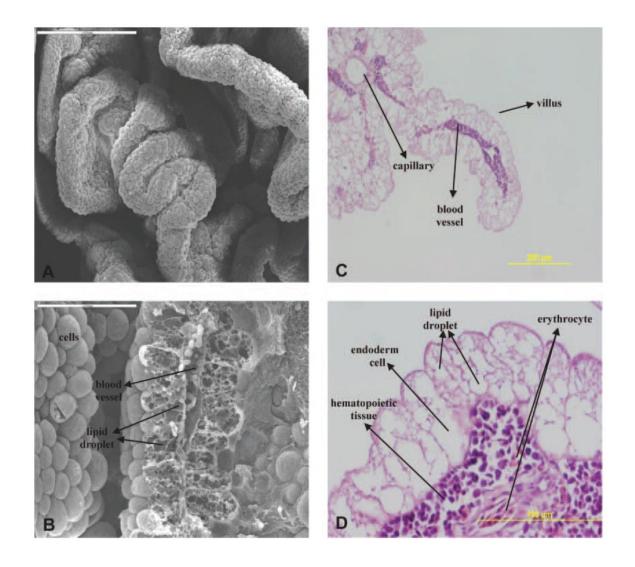


Amounts of Ca (solid black line) and Zn (dashed gray line) in the yolk sac of eggs from Cobb broiler breeder hens at 50 wk of age on different days during embryonic development. Data are expressed as means \pm SE (n = 8).

Relative consumption of Cu, Fe, Zn, P, Mn and Ca during incubation

YST Morphology throughout incubation (by SEM)

E15:

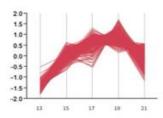

Cell surface area is large, no microvilli structures between cells

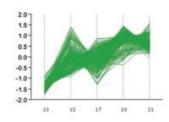
YST Morphology throughout incubation (by SEM)

E19:

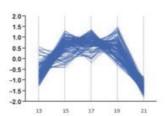
Cells begin to decrease in size, microvilli spread across cell surfaces

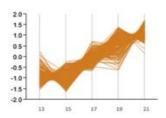
Electron micrograph (A, B) and hematoxylin and eosin-stained sections (C, D) of yolk sac membrane samples of broiler embryos on embryonic d 15.

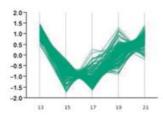

YST Morphology throughout incubation (by SEM)

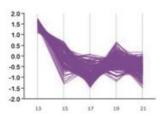

DOH:

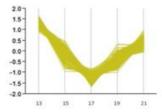
Cells are shrunken, microvilli cover entire cell surfaces

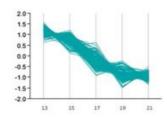

Temporal transcriptome analysis of the chicken embryo yolk sac


Cluster A1.1- 260 genes
1.89: calcium binding
1.33: ion binding
1.21: basement
membrane/extracellular
matrix organization


Cluster A2.2- 202genes
1.77: protein localization
1.72: cholesterol transport
1.61: endoplasmic
reticulum
1.59: lytic
vacuole/lysosome

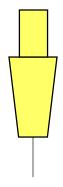

Cluster A3.1-101 genes 2.22: intermediate filament protein/structural molecule activity/cytoskeleton


Cluster B1.2- 243 genes
1.65: vitamin binding/
cofactor binding
1.46: positive regulation
of cell division
1.39: extracellular
region/signal peptide

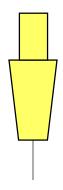

Cluster B2.2- 154 genes
2.5: cellular protein
localization
1.32: regulation of
organelle organization/
regulation of cytoskeleton
organization

Cluster C1.1- 189 genes 6.6: ribonucleoprotein complex 2.23: ribosomal subunit 1.73: establishment of 1.60: organelle localization WD40

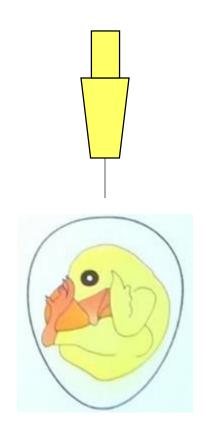
Cluster C2.3- 189 genes
3.56: nucleotide binding
3.30: macromolecule
catabolic process
2.91: proteasome complex
1.51: mitochondrial
membrane
1.35: proteolysis

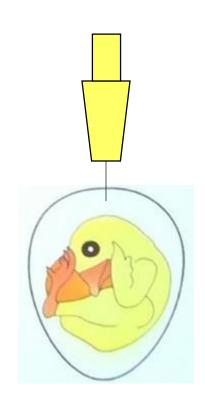

Cluster C3.2- 129 genes 4.08: cell cycle/ M phase 2.42: porphyrin metabolic process 2.23: DNA metabolic process/ DNA replication 1.51: cellular response to stress 1.33: mitochondrion

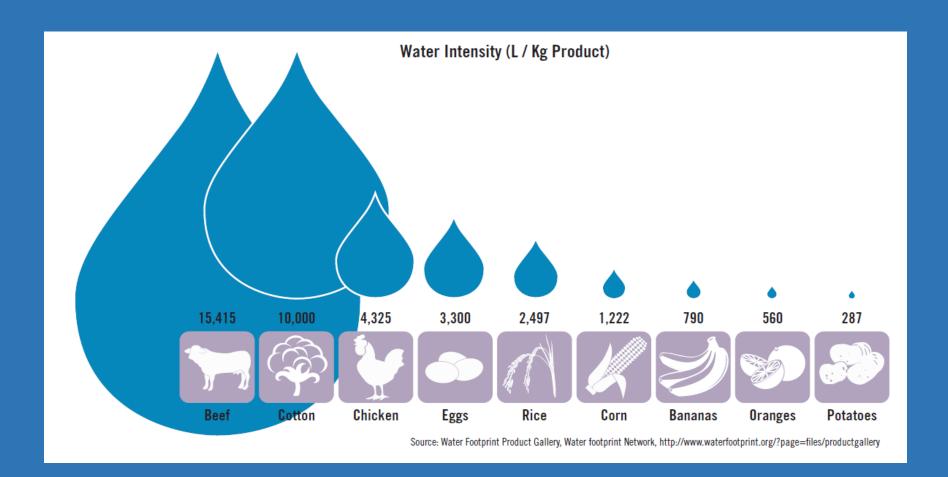
Summary:


- Differential uptake of yolk nutrients along incubation by the yolk sac tissue
- Uptake is dependent on environmental conditions (hatchery) and embryonic needs
- Yolk nutrients are digested along incubation by digestion enzymes produced by the yolk sac tissue.

Overall Conclusion: The yolk sac is a multifunctional organ


- Functions as an intestine, as it produces digestive enzyme and express nutrient transporters
- Functions as a liver, as it produces and accumulates glycogen during the incubation period
- Functions as a gallbladder, as it produces bile
- Functions as the bone marrow in the synthesis of blood cells




- In Ovo
- At the hatcher

- In Ovo
- At the hatcher
- At transport

- In Ovo
- At the hatcher
- At transport
- Hatching at the farm

